
Bharath Muppasani, Vishal Pallagani, Biplav Srivastava, Forest Agostinelli

Comparing Rubik's Cube Solvability in 
Domain-Independent Planners Using Standard 
Planning Representations for Insights and Synergy 
with Upcoming Learning Methods

ICAPS 2024

Banff, Canada

AI Institute, University of South Carolina, USA



ABCD

Outline

2

2

● Introduction / Motivation
● Background
● Rubik’s Cube 

○ Representations
○ Heuristics Considered 
○ Results Analysis

● Beyond RC - Sokoban
● Discussion and Conclusion



Introduction / Motivation
01.

3



Introduction / Motivation
● Combinatorial puzzles, like Sudoku, the Rubik's Cube, and N-Puzzle, 

often have vast numbers of possible configurations, posing significant 
computational challenges. 

● The Rubik's Cube, with over 43 quintillion possible states, serves as a 
prime example of this complexity.

● Navigating the immense state space efficiently poses significant 
computation challenges, especially for time and memory constraints.

4

● Achieving an optimal solution often conflicts with computational feasibility, highlighting the need for 
trade-offs between solution optimality and time taken.

● In our work, we compare different existing problem representations for the Rubik's Cube and solve 
the IPC-2023 Rubik's Cube problem dataset using various compatible heuristics. Our goal is to 
determine the best representation and heuristic combination for providing optimal solutions. 
Additionally, we also compare against the best learning-based solver, DeepCubeA.

● To assess the general applicability of our insights, we started exploring beyond the Rubik's Cube, 
focusing on the Sokoban puzzle.



Background
02.

5



Background

6

Rubik’s Cube: is a 3-D puzzle made up of 26 smaller colored pieces anchored to a central spindle. 

● The primary actions are Up (U), Down (D), Right (R), Left (L), Front (F), and Back (B), each 
representing a 90-degree clockwise turn, with their inverses indicating a counter-clockwise 
rotation. 

● Starting from a scrambled state, the goal is to perform a series of these rotations to return the 
cube to its solved state, where each face is a single color. 

Shuffled state of the cube. Solution found with FD planner: U, L. Cost: 2.



Background

7

Automated Planning: also known as AI planning, is the process of 
finding a sequence of actions that will transform an initial state of 
the world into a desired goal state, given the world model.

Key elements: Goals, Actions, States, Constraints



Background

8

Heuristic Search: uses a heuristic function to estimate the cost to 
reach the goal state from a given state. It helps in choosing actions 
that are likely to lead to a goal more efficiently.
Admissible Heuristics: never overestimate the cost to reach the 
goal, ensuring optimal solutions.
Inadmissible Heuristics: overestimate the cost, potentially finding 
solutions faster but not guaranteeing optimality.



Rubik’s Cube Representations
03.

9



SAS Model*
● SAS+ representation as a factored effect task.
● Action modeling

• Considered the change in orientation and location of 
cube pieces as action effect.

● Each cube piece is considered as a variable, and different 
values are assigned based on orientation and location of the 
cube piece.

• Corner pieces - 3 orientations, 8 locations - 24 values
• Edge pieces - 2 orientations, 12 locations - 24 values

● State representation using - 20 Variables (8 Corner pieces, 
12 Edge pieces); 480 Fact Pairs - 16 Bytes memory.

10*Büchner, C., Ferber, P., Seipp, J. and Helmert, M., 2022, April. A Comparison of Abstraction Heuristics for Rubik's Cube. In ICAPS 2022 Workshop on Heuristics and Search for Domain-independent Planning.

Orientation 1;
Location 1

Orientation 2;
Location 1

Orientation 3;
Location 1



PDDL Model
● Used conditional effects in PDDL modeling.
● Action Modeling

• Fixed cube piece positions
• Colors as objects - change of colors on cube 

pieces as effect of an action.
● State representation after translating to SAS by 

FastDownward Planner
• 480 variable (binary) - 960 fact pairs
• 60 bytes memory

11



DeepCubeA representation
● Considered a one-hot encoding for the state representation
● All the 54 color values of the Rubik’s Cube are represented in a 

unidimensional array.

12

1 2 3 4 51 52 53 54

Sample state representation of a fully solved Rubik's Cube.



Heuristics Considered for Evaluation

04.

13



Heuristics

14

● We considered evaluating various heuristics available in the FastDownward planning system that 
are compatible with conditional effects in domain modeling.

Inadmissible Heuristics

Admissible Heuristics



Pattern Database Heuristic

15

● Two version - 
• ℎPDB-MAN manual patterns - Inspired by Korf’s patterns* for Corner and Edge pieces.
• ℎPDB-SYS automatically generates interesting patterns 

Korf, R.E., 1997, July. Finding optimal solutions to Rubik's Cube using pattern databases. In AAAI/IAAI (pp. 700-705).

Corner pieces Edge pieces



Result Analysis

05.

16



Result Analysis

17

● Experimental Setup:
○ We evaluated two different Rubik’s Cube representations, using various heuristics, on the IPC-2023 Rubik’s 

Cube Dataset. For each heuristic, we performed A* searches utilizing PDDL and SAS+ domain models.
■ Time Limit / problem - 30 minutes; Memory limit / problem - 8GB.

● Abstraction Heuristics are sensitive to problem representation - Poorer in PDDL compared to SAS+
● ℎM&S solved the same number of problems using both PDDL and SAS+, but it had a higher memory footprint 

for PDDL than SAS+ due to the lower memory requirement of SAS+ (16 bytes) compared to PDDL (60 
bytes).

● Implications with PDB Heuristic:
○ Pattern Size Limitation: Using the SAS+ model, effective patterns can be selected with a small pattern size (1 

variable per cube piece), unlike PDDL (24 variables per cube piece).
○ Projection Complexity: In SAS+, small pattern sizes can lead to many states due to variable multiplicity (e.g., 4 

variables for corner cubies result in 331,776 states). In contrast, PDDL's binary variables require 96 variables 
for the same, making it inefficient and leading to increased complexity and memory usage.

● DeepCubeA solved all the tasks optimally, highlighting a key trade-off: while standard heuristics are broadly 
applicable to various domains with minimal computational overhead, DeepCubeA algorithm which learns 
domain-specific heuristics in a largely domain-independent fashion, does not generalize to other domains 
without the costly overhead of additional training.



Result Analysis

18

Comparison of the planner configurations including the total number of problems solved, along with the percentage of optimal plans, average number of nodes 
generated, average search time in seconds, average memory usage in MB, and average plan cost for the solved instances across different Rubik's Cube models 
evaluated on the IPC-2023 dataset. (* - IPC-2023 Classical optimal-track winner; + - Admissible heuristics)



State Expansion Comparison

19
State expansion comparison for the IPC-2023 dataset. The x-axis denotes problem numbers, and the y-axis shows the states evaluated. A top horizontal dotted 
line indicates unsolved problems, while a vertical dashed line marks the problems solved by the IPC-2023 Classical optimal track winner.

● It can be observed in ℎPDB the number of states expanded to find a solution is lesser with SAS+ 
representation than the PDDL representation.



Beyond Rubik’s Cube
06.

20



Sokoban - PDDL vs DeepCubeA

21

● To assess the generalizability of our results, we examined the 
Sokoban puzzle domain from IPC-20081, a strategic game 
requiring players to push boxes to designated locations within 
a confined space, using heuristic based planners and 
DeepCubeA algorithm.

● Despite DeepCubeA's efficiency in solving the Rubik's Cube, 
its performance in the Sokoban domain revealed limitations in 
domain adaptability, with a success rate of only 8 out of 30 
puzzles.

● This underscores the challenges in generalizing 
learning-based approaches across diverse problem types and 
highlights the need for retraining models for each new 
domain. Comparative analysis of PDDL and DeepCubeA on 

the Sokoban domain using IPC-2008 dataset. 
(*noting that only 8 problems had a grid size close to 
10x10, while the remainder exceeded DeepCubeA’s 
grid size limit)

1https://github.com/potassco/pddl-instances/tree/master/ipc-2008/domains/sokoban-sequential-optimal-strips



Conclusion
07.

22



Conclusion

23

● Efficiency Comparison: Our study found that the SAS+ representation is approximately 75% more 
memory efficient than PDDL for solving the 3x3x3 Rubik's Cube, making it the preferred choice 
among standard representations.

● Performance of Methods: The learning-based DeepCubeA approach solved all problems optimally 
using its default 12-action set, while the best planner configuration achieved only 75% 
problem-solving with 100% optimality. However, its performance in the Sokoban domain revealed 
limitations in domain adaptability and generalization.

● Future Directions: Combining learning-based approaches like DeepCubeA with traditional planning 
methods using PDDL and SAS+ representations could lead to generalization across the domain 
variations.



ABCD

Contact Information

Bharath Muppasani – 
bharath@email.sc.edu

24

24

LEARN 
MORE HERE!

THANK 
YOU ALL

AI4Society


