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Abstract

Tracking the rapidly evolving literature at the intersection
of large language models (LLMs) and planning has become
increasingly complex due to significant growth in research
output and shifting thematic focuses. Building on the survey
by Pallagani et al. (2024), which organized 126 papers col-
lected till November 2023 into eight categories, we present
a platform that automates the extraction, categorization, and
trend analysis of new papers. Our analysis reports on category
drift, identifying evolving perspectives on the use of LLMs
for planning. Our analysis reveals a decline in the percentage
of papers for six categories, an increase in two, and the emer-
gence of two new categories. Specifically, we contribute by
(1) developing an automated system for categorizing new pa-
pers into existing or emergent categories, (2) reporting on cat-
egory shifts with the addition of 47 new papers till September
2024, and (3) introducing a platform for continuous extrac-
tion, categorization, and trend tracking in LLM and planning
research. This platform also features a leaderboard to encour-
age innovations in automated paper categorization.

Introduction
The field of LLMs in planning is experiencing rapid growth,
evolving well beyond its initial foundations. In recent years,
research at the intersection of LLMs and planning has ex-
panded both in volume and complexity, prompting a need
to reconsider existing frameworks for organizing and un-
derstanding this literature. Early surveys, such as the one
by Pallagani et al. (2024), categorized over a hundred stud-
ies across eight established categories, laying a foundational
taxonomy that enabled researchers to contextualize and
build upon prior work. However, with the pace of advance-
ments and the emergence of diverse approaches, new cate-
gories are emerging that reflect shifting perspectives on the
role of LLMs in planning. These emerging categories, which
extend beyond the eight defined in the previous survey, un-
derscore the limitations of traditional, static taxonomies in
capturing the nuances of this rapidly evolving domain. This
progression highlights the need for a more flexible, respon-
sive structure capable of accommodating new developments
as they arise.
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In this position paper, we address these evolving dynam-
ics by contributing: (a) automation in the categorization
process, introducing an automated tool that leverages natu-
ral language processing techniques to streamline the extrac-
tion and categorization of relevant papers, providing a scal-
able solution for dynamically updating taxonomies in this
fast-evolving domain; (b) an updated categorization of lit-
erature in LLM and planning, re-evaluating the existing
taxonomy to accommodate the growing breadth of research
and identifying emerging themes and trends in the deploy-
ment of LLMs for planning tasks; and (c) a testbed to sup-
port future research, including baseline tools, submission
guidelines, and visualization mechanisms. This framework
allows other researchers to benchmark and enhance auto-
mated categorization methods using the provided baseline
data and leaderboard.

Our work underscores the importance of a responsive,
adaptive approach to literature organization, particularly in
the context of LLMs and planning, where research progress
is both rapid and multifaceted. By documenting the shifts
within existing categories and introducing automation, we
aim to set a new standard for tracking academic trends in a
way that is both structured and capable of evolving along-
side the field.

Automation of Category Identification
Let C = {c0, c1, c2, . . . , cn} be a set of category labels,
where each label ci ∈ C represents a distinct research area
or topic, such as Plan Generation or Language Transla-
tion. A taxonomy T is defined as a subset of these labels
that represents a comprehensive classification structure for
a particular field. This taxonomy might be derived by ana-
lyzing a set of documents D = {p1, p2, . . . , pk}, such as
research papers, relevant to a research domain. For exam-
ple, a taxonomy could be {Brain-inspired Planning, Heuris-
tic Optimization, Interactive Planning, Language Transla-
tion, Model Construction, Multi-agent Planning, Plan Gen-
eration, Tool Integration}, as reported in Pallagani et al.
(2024), where D consists of 126 documents.

In this automated classification system, each document
in a new set of papers D′ = {p′1, p′2, . . . , p′m} is catego-
rized based on relevance to an existing taxonomy T or an
uncategorized option if no suitable match exists. To catego-
rize each new paper p′ ∈ D′, we define a goodness metric



g(p′, ci), which evaluates the relevance of p′ to each cate-
gory ci ∈ C ∪ {c0}, where c0 represents the uncategorized
category. The single label categorization problem assigns
each paper p′ to the category c∗i with the highest relevance
score, provided it exceeds a threshold τ :

c∗i = argmax
ci∈C∪{c0}

g(p′, ci)

If g(p′, ci) < τ for all ci ∈ C, the paper p′ is assigned to c0,
as it does not sufficiently match any predefined category.

The multi-label categorization problem assigns each doc-
ument to one or more categories that reflect the reality that
research papers often cover multiple, overlapping topics. In
this setup, each paper p′ ∈ D′ is assigned to a subset of cat-
egories C ′ ⊆ C where the goodness metric g(p′, ci) exceeds
the threshold τ :

C ′ = {ci ∈ C | g(p′, ci) ≥ τ}
If C ′ is empty, the paper is assigned to the uncategorized

category c0. After each categorization cycle, occurring at a
defined time interval Tperiod, the taxonomy T is updated to
reflect the inclusion of newly categorized papers, forming
an updated taxonomy T ′ as follows:

T ′ = T ∪ {(p′, c∗i ) | p′ ∈ D′, c∗i = argmax
ci∈C∪{c0}

g(p′, ci)}

This evolving taxonomy model thus continuously inte-
grates new research data, adapting to emerging topics and
ensuring that the classification system remains relevant and
current.

Experimental Setup
We aim to identify the most effective method for accurately
categorizing research papers by applying the single- and
multi- label setups across different machine-learning mod-
els. Additionally, we implemented a human-augmented
method that combines human expertise with the initial cate-
gorization provided by the best-performing automated clas-
sification model, further refining the categorization results.

To support this goal, we developed an Automated Paper
Extraction Tool that continuously retrieves and filters pa-
pers from the ArXiv scholarly database. The system, imple-
mented with Tperiod = 14 days, queries the ArXiv database

Classifier
Name

Single-Label Setup Multi-Label Setup

D1 D2 D1 D2

SVM 0.222 0.346 0.123 0.280
DT 0.124 0.258 0.233 0.349
RF 0.117 0.213 0.044 0.215
BERT 0.049 0.043 0.102 0.069
SciBERT 0.000 0.013 0.102 0.150

Human-augmented - - - 0.83

Table 1: F1 Macro Scores for single-label and multi-label
setups across different classifiers on datasets D1 and D2.
The best scores across each setup are shown in bold.

for recent publications in the fields of LLMs and planning.
Papers are filtered using predefined keywords and stored in a
database for deduplication and categorization. This pipeline
ensures continuous, up-to-date retrieval of relevant research
documents, resulting in an evolving dataset D′ ready for cat-
egorization.
Dataset: The dataset includes a labeled set of previously cat-
egorized papers D1 (126 papers) obtained from Pallagani
et al. (2024) and a new set D2 (47 papers), which is extracted
using the automated extraction tool that requires categoriza-
tion. Titles and abstracts are combined to create a compre-
hensive representation and features are extracted using TF-
IDF vectorization, with a maximum of 5,000 features and
stop word filtering on the NLTK’s (Bird, Klein, and Loper
2009) English word set.
Classification Models: We implemented two main ap-
proaches that chose some of the state-of-the-art classifica-
tion models (Olson et al. 2018):

• Traditional ML: Decision Trees (Wu et al. 2008), Ran-
dom Forests (Ho 1995), and Support Vector Machines
(SVM) (Cortes and Vapnik 1995), adapted for multi-label
classification using a One-vs-Rest (OVR) approach, as
implemented in scikit-learn (Pedregosa et al. 2011), ef-
fectively adapting these classifiers for both single-label
and multi-label setups.

• Transformer-based: BERT (Kenton and Toutanova
2019) and SciBERT (Beltagy, Lo, and Cohan 2019) mod-
els are employed with frozen pre-trained weights and a
trainable classification head, leveraging domain-specific
scientific language understanding. The transformer archi-
tecture’s capability to handle semantic nuances and con-
textual embeddings makes it a powerful tool for catego-
rizing scientific literature.

• Human-augmented: Using the best-performing auto-
mated classification model (DT) as a foundation, this
method involves two expert annotators who indepen-
dently reviewed and refined the model’s categorization
output. Each annotator reviewed all documents catego-
rized by the model and re-categorized papers where nec-
essary. A consensus mechanism resolved discrepancies
between annotators, ensuring high-quality final labels.
This combined approach leverages human expertise to
improve classification accuracy, especially for ambigu-
ous or nuanced papers that require a new category absent
in C.

Experimental Results
The F1 macro scores across single-label and multi-label se-
tups are shown in Table 1. In the single-label setup, SVM
achieved the highest scores for both datasets, with 0.222
on D1 and 0.346 on D2, suggesting that SVM effectively
distinguishes primary categories in this setup. The Decision
Tree (DT) followed closely, with 0.258 on D2, indicating it
may also be well-suited for single-label tasks with straight-
forward category distinctions. In the multi-label setup, DT
performed best on both datasets, scoring 0.233 on D1 and
0.349 on D2, demonstrating its ability to manage overlap-
ping categories more effectively than other models. SVM



Figure 1: Comparison of category distributions between D1 and D2. The y-axis shows the percentage of papers, x-axis shows
the categories, and the numbers above each bar represent the actual paper counts. New categories identified in D2, Goal
Decomposition and Replanning, indicate emerging research directions in using LLMs for planning.

also showed strong performance in this setup, particularly
on D2 with an F1 score of 0.280. These results suggest that
DT and SVM may better capture the complexity of multi-
label classification, where documents often span multiple
categories.

Transformer-based models, BERT and SciBERT, showed
lower performance across both setups, particularly with a
minimal score on D2 in the single-label setup (SciBERT:
0.013; BERT: 0.043). Their relatively low scores could be
due to limited training data, which typically affects trans-
former models that require large datasets to capture fine-
grained distinctions. While BERT and SciBERT are de-
signed for general language understanding, they may lack
the specific adaptations needed for categorizing niche re-
search topics in AI and planning domains.

The human-augmented method achieved a macro F1-
score of 0.83, outperforming both traditional machine learn-
ing and transformer-based models in multi-label setup on
D2. The inter-annotator agreement, measured using Cohen’s
Kappa, was 0.78, indicating substantial agreement between
annotators and supporting the consistency of human cate-
gorization decisions. This higher performance can be at-
tributed to the human annotators’ ability to capture sub-
tle distinctions within overlapping categories and to iden-
tify new, emerging research areas that automated models
were unable to detect in the current setup. Consequently,
this human-augmented approach offers a significant advan-
tage in scenarios requiring high classification accuracy and
adaptability to nuanced and evolving categories.

Analysis of Category Distribution
In our analysis, we compared the distribution of research
papers across categories in two datasets: D1 and D2. D1,
established in prior work (Pallagani et al. 2024), organized

126 papers into eight distinct categories, represented as
the first eight categories in the bar plot. These categories
include Plan Generation, Language Translation, Inter-
active Planning, Model Construction, Heuristics Opti-
mization, Tool Integration, Brain-Inspired Planning, and
Multi-agent Planning.

As research in LLMs and planning has progressed, we
applied our automated categorization tool to classify the pa-
pers in D2. This new set of research papers not only shifted
the distribution of papers across the existing eight categories
but also introduced two new categories: Goal Decomposi-
tion and Replanning.

Figure 1 visually illustrates these changes in category dis-
tribution. The y-axis represents the percentage of papers,
while the numbers displayed above each bar indicate the ac-
tual count of papers in each category. The x-axis represents
the existing eight categories along with the two newly iden-
tified categories. Key observations include that Plan Gener-
ation remains the most dominant category, although its de-
creased percentage reflects a shift in research focus as new
studies emphasize specialized, task-oriented applications of
LLMs. This change is driven by a growing belief that LLMs
face fundamental challenges in generating fully executable
plans independently, as highlighted in recent research on
their planning limitations. Similarly, the reduced represen-
tation in Language Translation and Interactive Planning
categories may be attributed to researchers recognizing that
while LLMs perform well in isolated translation and in-
teraction tasks, they face difficulties when these capabili-
ties must be applied within complex, end-to-end planning
frameworks. Model Construction has become the second-
highest category by percentage of papers in D2, reflecting
increased efforts to leverage the parametric knowledge of
LLMs for building planning domain models.This shift indi-



cates a trend toward leveraging LLMs to automate the labor-
intensive process of generating structured planning domain
representations, traditionally one of the most manually de-
manding tasks in planning. Furthermore, the stable presence
of Heuristics Optimization in both datasets suggests sus-
tained interest in optimizing planning strategies within the
constraints of current LLM capabilities, with a focus on im-
proving efficiency rather than achieving autonomous plan-
ning.

The growth in Tool Integration, which holds the third-
highest percentage in D2, reflects a shift toward augment-
ing LLMs with external systems that can supplement their
planning capabilities. Conversely, the decrease in Brain-
Inspired Planning and Multi-agent Planning suggests a
shift in focus away from mimicking high-level cognitive
processes and multi-agent dynamics solely within LLMs.
In the case of brain-inspired planning, researchers appear to
be moving towards neurosymbolic systems, which integrate
symbolic reasoning with neural networks rather than purely
emulating cognitive processes within LLMs. This approach
has shown to be more effective in combining structured logic
with data-driven insights, especially for complex planning
tasks requiring precise execution. Similarly, the reduced in-
terest in multi-agent planning reflect the challenges LLMs
face in coordinating interactions across multiple agents au-
tonomously, particularly when real-time or high-fidelity co-
ordination is required. The newly identified categories, Goal
Decomposition and Replanning, are notable additions with
4 and 1 papers, respectively, in D2. These categories point
to emerging research directions focused on task structuring
and adaptability, as researchers increasingly explore LLMs
potential to support modular planning and real-time adjust-
ments. Their emergence reflects the growing interest in cre-
ating flexible LLM-based systems suited for dynamic, real-

Figure 2: Decision flowchart for adding research papers to
the visualization tool, detailing the submission, verification,
and integration process.

world applications.
This distribution shift reflects broader conversations in the

field regarding the role and limitations of LLMs in planning
tasks. For instance, recent works argue that “LLMs can’t
plan by themselves but can aid planning within a frame-
work that integrates external verifiers” (Kambhampati et al.
2024), while others emphasize that direct planning through
LLMs often fails upon execution, despite their strength in
commonsense reasoning (Li et al. 2024). Furthermore, there
is a call to develop foundation models specifically tailored
for planning-like tasks, as current LLMs lack the special-
ized training needed to meet the intricate demands of these
domains (Srivastava and Pallagani 2024).

Testbed and Tools
To encourage innovation and rigor in automated research pa-
per categorization, we will open-source our tool for auto-
matic extraction of relevant literature and release a human-
annotated dataset containing categorizations of the updated
dataset of papers on LLMs and planning. Additionally, a
leaderboard will be established to motivate contributions of
novel automated categorization methods. This leaderboard
will feature baseline methods, as detailed in the previous
section, allowing for transparent benchmarking and foster-
ing a collaborative environment for advancements in auto-
mated categorization techniques. Additionally, we have de-
veloped an interactive visualization tool that allows users
to explore research papers systematically categorized across
various categories. This tool not only facilitates stream-
lined access to pertinent literature within each category but
also provides real-time insights on trending topics, cate-
gory shifts, and emerging areas of study. Leveraging our au-
tomated paper extraction and categorization pipeline, new
publications are dynamically incorporated into the visual-
ization. Furthermore, a manual submission feature enables
users to add their own research papers, with the submission
workflow outlined in Figure 21.

Conclusion
This study presents a scalable, adaptive framework for track-
ing literature evolution in LLM and planning research, com-
bining automated categorization with human-augmented re-
finement to address category drift and emerging themes.
Our approach reports on category drift from the previous
taxonomy revealing a decline in the percentage of papers
for six categories, an increase in two, and the emergence
of two new categories—Goal Decomposition and Replan-
ning—that extend the prior taxonomy. The automated sys-
tem and leaderboard streamline the integration of new re-
search while fostering collaborative innovation in classifica-
tion methods. By enabling a dynamic understanding of the
field’s trajectory, this approach helps researchers efficiently
navigate and contribute to the complex, rapidly advancing
intersection of LLMs and planning. This work is represen-
tative of an emerging trend to automate review of literature
and generate insights (TAMA-Review 2024), and one can

1GitHub with the tool, dataset, and necessary code will be made
public post review phase



extend it in future to support other disciplines beyond AI
planning.
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