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Abstract

LLMs are increasingly being deployed as chatbots, but to-
day’s interfaces offer little to no friction: users interact
through seamless conversations that conceal when the model
is drifting, hallucinating or failing. This lack of transparency
fosters blind trust, even as models produce unstable or repet-
itive outputs. We introduce an interactive demo that surfaces
and mitigates cognitive fatigue, a failure mode where LLMs
gradually lose coherence during auto-regressive generation.
Our system, Chatsparent, instruments real-time, token-level
signals of fatigue, including attention-to-prompt decay, em-
bedding drift, and entropy collapse, and visualizes them as a
unified fatigue index. When fatigue thresholds are crossed,
the interface allows users to activate lightweight interven-
tions such as attention resets, entropy-regularized decoding,
and self-reflection checkpoints. The demo streams live text
and fatigue signals, allowing users to observe when fatigue
arises, how it affects output quality, and how interventions
restore stability. By turning passive chatbot interaction into
an interactive diagnostic experience, our system empowers
users to better understand LLM behavior while improving
reliability at inference time. The demo video is available at
https://youtu.be/ktqgkZy Y WDDE.

Introduction and Contributions

Rapid deployment of LLMs in conversational interfaces has
made them appear natural, seamless, and effortless (Lebeuf,
Storey, and Zagalsky 2017). Yet, this very lack of friction
hides a fundamental risk: users are encouraged to place blind
trust in outputs, even when the model is drifting, hallucinat-
ing, or failing (Georgiou 2025). Current chatbot interfaces
provide little transparency into when such degradation oc-
curs, leaving users unaware of why answers become repeti-
tive, incoherent, or overconfident.

We argue that these behaviors are not rare anomalies but
symptoms of a deeper failure mode (Arbuzov, Shvets, and
Beir 2025), which we call cognitive fatigue, a gradual loss
of coherence and stability as autoregressive generation un-
folds. Fatigue emerges naturally from architectural pressures
such as decaying prompt attention (Li et al. 2024), accumu-
lation of hidden-state drift (Wei et al. 2025), and entropy
collapse in the token distribution. Crucially, fatigue can be
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detected online during inference and mitigated without re-
training, turning auto-regressive generation from a passive
risk into an active control problem.

To address this, we introduce an interactive demo called
Chatsparent that makes cognitive fatigue visible, mea-
surable, and actionable. Our system instruments three
lightweight, token-level signals (attention-to-prompt decay,
embedding drift, and entropy collapse) and fuses them into
a unified fatigue index. This index is streamed in real time
alongside model outputs, giving users a live view of when
fatigue arises. When thresholds are crossed, the interface
enables retrain-free interventions including prompt rein-
sertion, entropy-regularized decoding, and self-reflection
checkpoints. By letting users toggle decoding and interven-
tions, the demo turns chat into a diagnostic that exposes
model dynamics and improves reliability. Our contributions
are threefold: (a) we formalize and measure cognitive fa-
tigue as an online state using token-level signals of attention
decay, embedding drift, and entropy collapse; (b) we intro-
duce retrain-free interventions that counteract fatigue during
decoding; and (c) we provide an interactive demo system
that visualizes fatigue in real time and allows users to ap-
ply these interventions, transforming generation into a more
reliable and interpretable process.
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Figure 1: Fatigue-aware decoding pipeline.

System Overview

We view autoregressive decoding as a controlled process
with a latent reliability state. At each step ¢, we compute
three signals: A; is the mean last-layer attention mass from
the current token to a fixed prompt slice; Dy = ||hs — hol|2



measures embedding drift from the prompt’s last-token hid-
den state hg; and E} is the entropy of the next-token softmax.
After normalizing each via ¢. € [0, 1], we define a compact
fatigue index

Fy=wa¢a(Ar) + wp ¢p(Dy) + wg ¢p(Er),

with a small hysteresis band to avoid rapid toggling. Weights
are defaulted as wy = 0.40, wgp = 0.35, wp = 0.25
(attention prioritized for instruction-following; entropy for
calibration; drift down-weighted due to cross-model scale).
A simple policy monitors F} (or any constituent signal) and
triggers an intervention when the safe region is breached.
The demo surfaces this control loop as a single pipeline con-
sisting of three stages: Sense (signals), Decide (thresholds
and hysteresis), and Intervene (SCA, PAR, ERD, PAUSE).

Signals and Interventions

Signals. Attention-to-prompt captures loss of instruction fo-
cus as context grows; a sustained decline indicates prompt
under-use. Embedding drift reflects the cumulative effect of
attention/MLP updates in the shared residual stream; rising
values indicate wandering representations. Entropy tracks
calibration: persistent lows reveal over-confidence and a
tendency toward repetition. Together, the signals form a
lightweight proxy for the onset of fatigue.

SCA (attention-triggered prompt reinsertion). When the
attention signal A; falls below a threshold and a cooldown
permits, we re-prepend the original prompt and keep only a
short recent tail of tokens so the sequence stays within the
context limit. This “break-glass” action refocuses the model
without editing the key—value cache (Rawte et al. 2024).
PAR (periodic attention reset). At a fixed cadence k, the
context is rebuilt as [prompt + recent_tail]. PAR produces
bumps in attention around reset boundaries, acting as a pre-
ventive nudge against gradual decay. (Xu et al. 2024).

ERD (entropy-regularized decoding). At each step, we
measure F; and adjust the temperature T € [Tinin, Tmax)
to track a target entropy Hiuge: if the entropy is too low,
increase T'; if too high, decrease it. ERD curbs entropy col-
lapse and indirectly flattens attention decay while leaving
the representation dynamics largely unchanged. (Liu et al.
2023).

PAUSE (Self-reflection checkpoints, chain-of-thought
questioning) On a fixed cadence r or whenever uncertainty
or drift increases (for example, when the entropy signal E,
falls outside its safe band or when the drift signal D, rises
above a threshold), the model briefly pauses generation to
perform a targeted self-check. (Ezzeldin et al. 2024).

Experimental Snapshot

We evaluate Falcon-7B-Instruct (Almazrouei et al.
2023) quantized to 4-bit NF4 (bitsandbytes), with ea-
ger attention. Decoding defaults: top-p = 0.95, T' = 1.0,
max_new = 120. We probe every token to log three on-
line signals: attention-to-prompt A;, embedding drift Dy,
and next-token entropy E;. These are combined into the Fa-
tigue Index with an entropy “healthy band” [1.5,3.0] and
light hysteresis for stability.
Interventions.

e SCA: 74 = 0.010, cooldown = &, max = 1,
tail_ keep = 128.

* PAR: reset_every =50, tail_keep = 128.

* ERD: fix top-p; adjust T' € [0.7,1.5] with gain k = 0.35
to track H* = 2.8.

* PAUSE: insert a 1-line focus check every 30 tokens (gate
= 5 tokens).

Data & reporting. We use HotpotQA (dev) (Yang et al.
2018). For the demo table we report a representative single
item under the free-form prompt; a strict short-answer vari-
ant is provided in the supplement. Metrics shown are Mean
FI (averaged over generated tokens) and wall-clock latency.

Table 1: Comparison of fatigue index and decoding latency
for a single-prompt setting.

Method Mean Fatigue Index | Latency (s) |

Baseline 0.36 213.47

ERD 0.31 (-0.05) 212.45

PAR 0.34 (-0.02) 222.36

PAUSE 0.31 (-0.05) 228.02

SCA 0.32 (-0.04) 225.11
Demo Walkthrough

From the left control panel, paste a prompt or pick a Hot-
potQA item, choose decoding (Greedy/Top-k/Top-p/Beam)
and model, then optionally enable SCA/PAR/ERD/PAUSE
and set their knobs. The center panel streams the answer,
shows a Fatigue Index gauge, plots the three signals and
explains the run; you can overlay the baseline and export
CSV/JSON. The right panel reports risk of degradation.
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Figure 2: Interactive demo.

Conclusion

We operationalize cognitive fatigue as a detect-and-act loop
during decoding. By monitoring attention decay, represen-
tation drift, and entropy collapse, and by applying simple
interventions, we improve long-horizon reliability on multi-
hop QA without retraining. The demo offers a practical path
toward safer, longer-context deployments by turning silent
degradation into visible signals and actionable control.
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