
Promoting Research Collaboration with Open Data Driven Team
Recommendation in Response to Call for Proposals

Siva Likitha Valluru1, Biplav Srivastava1, Sai Teja Paladi1, Siwen Yan2, Sriraam Natarajan2

1Artificial Intelligence Institute, University of South Carolina
2 Statistical Artificial Intelligence and Relational Learning Group (StARLinG Lab), University of Texas
{svalluru@email., biplav.s@, spaladi@email.}sc.edu, {siwen.yan, sriraam.natarajan}@utdallas.edu

Abstract

Building teams and promoting collaboration are two very
common business activities. An example of these are seen in
the TeamingForFunding problem, where research institutions
and researchers are interested to identify collaborative oppor-
tunities when applying to funding agencies in response to lat-
ter’s calls for proposals. We describe a novel deployed system
to recommend teams using a variety of AI methods, such that
(1) each team achieves the highest possible skill coverage that
is demanded by the opportunity, and (2) the workload of dis-
tributing the opportunities is balanced amongst the candidate
members. We address these questions by extracting skills la-
tent in open data of proposal calls (demand) and researcher
profiles (supply), normalizing them using taxonomies, and
creating efficient algorithms that match demand to supply.
We create teams to maximize goodness along a novel met-
ric balancing short- and long-term objectives. We validate
the success of our algorithms (1) quantitatively, by evaluating
the recommended teams using a goodness score and find that
more informed methods lead to recommendations of smaller
number of teams but higher goodness, and (2) qualitatively,
by conducting a large-scale user study at a college-wide level,
and demonstrate that users overall found the tool very useful
and relevant. Lastly, we evaluate our system in two diverse
settings in US and India (of researchers and proposal calls) to
establish generality of our approach, and deploy it at a major
US university for routine use.

1 Introduction
In the recent decade, there has been an increased interest
in studying teamwork skills and their impacts in a mul-
titude of domains (e.g., academia (Alberola et al. 2016),
social networking (Anagnostopoulos et al. 2012), project
management (Noll et al. 2016), healthcare (Nawaz et al.
2014)). Building successful teams is a common business
strategy (e.g., forming rescue and relief teams in response
to an emergency (Gunn and Anderson 2015), establishing
entrepreneurial teams for new ventures (Lazar et al. 2020),
forming teams dynamically in context of multi-agent sys-
tems (e.g., supply chains) (Gaston and desJardins 2005)).
In this paper, we focus on teaming for researchers applying
to funding agencies in response to their call for proposals,
using group recommendation strategies. The advantage of
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Figure 1: A demo use case, UC1, showing a team partici-
pant view of ULTRA.

this setting is that the required data is already publicly avail-
able. A large amount of research funding in public universi-
ties comes from external funding agencies such as National
Science Foundation (NSF) and National Institutes of Health
(NIH). These opportunities often require multi-disciplinary
teams from a wide variety of backgrounds to be quickly as-
sembled. However, not every single team is often successful
in achieving their goals, due to factors such as lack of accu-
rate information, time, or communication, and incompatibil-
ity in terms of skill sets among team members.

We build upon prior work, ULTRA (University-Lead
Team Builder from RFPs and Analysis) (Srivastava et al.
2022), a novel AI-based prototype for assisting with team
formation when researchers respond to calls for proposals
from funding agencies. In this paper, we interchangeably use
the term call for proposal with request for proposal (RFP).
Figure 1 shows a demo1 view of how the system works for an
individual user who can become a team participant. The sys-
tem first extracts technical skills from proposal calls found
at publicly available data sources (e.g., NSF archives) and
those present in online profiles of researchers (e.g., personal
homepages, Google Scholar history), along with any addi-

1A full demo interaction with the ULTRA system can be found
at https://www.youtube.com/watch?v=8MUtxsfVNIU. The tool is
deployed at http://casy.cse.sc.edu/ultra/teaming/. Additional details
about usecases, experiments, and survey resources are at (Valluru,
Srivastava, and Paladi 2023).



tional teaming constraints that administrators or team partic-
ipants of an institution may provide. Using AI and NLP tech-
niques, ULTRA next provides a plausible list of candidate
teams for each proposal call, where each team has at least
two members. Our prior work (Srivastava et al. 2022), how-
ever, is a use case of a sequential single-item recommenda-
tion problem, where solutions are often limited by known is-
sues such as cold start (Abdollahpouri, Burke, and Mobasher
2019) or popularity bias (Yalcin and Bilge 2022). Therefore,
we expand on this work to include group recommendation
and novel AI methods to recommend optimal teams.

Our contributions in the paper are that we:

• formulate a novel group recommendation problem to pro-
mote research collaborations where the objective is to
suggest teams that could respond to calls for proposals,
using skills found in open data, and balancing short- and
long-term optimization.

• introduce a metric to measure goodness of teams and
consider a configurable set of criteria: redundancy, group
(set) size, coverage, and robustness.

• solve the novel problem using a variety of AI methods:
string, taxonomy, and bandit (relational learning) meth-
ods, and compare them with a randomized baseline.

• establish the benefit of the solution methods quantita-
tively using goodness metric. We find that more informed
methods lead to recommendations of smaller number of
teams but higher goodness.

• establish the benefit of the system qualitatively using an
IRB-approved preliminary survey at a College of a ma-
jor US University. We find that users broadly consider
the tool useful as well as relevant but more studies are
needed.

• demonstrate the generality of the approach with experi-
ments at two different institutions in US and India.

• create and publish a teaming dataset that is available for
research.

2 Related Work
A well-studied problem of AI in team formation is the Hedo-
nic Games framework (Aziz et al. 2017; Gairing and Savani
2010), a coalition structure consisting of disjoint coalitions
that cover all players, where each player estimates a valu-
ation for other players in their group. Team formation has
also been considered in project management, where evalua-
tion of team members is conducted by measuring attributes
such as leadership skills, technical talent, problem solving
capabilities, and cultural relevance (Warhuus et al. 2021).
Sports leagues assess the physical and functional well-being
of players before forming teams (Dadelo et al. 2014). Such a
task can be complex as teams often require players who are
efficient in multiple roles. (Ahmed, Deb, and Jindal 2013)
used the NSGA-II algorithm and employed an evolutionary
multi-objective approach to obtain a high-performing team
for cricket tournaments. Some factors that the system takes
into consideration are batting average and bowling perfor-
mance of individual players, wicket-keeper’s past perfor-
mances, and other rule-based constraints. Depending on the

team selection strategy, each of the above factors are ranked
(or nulled) according to importance and the final solution
set is obtained according to it. If all the factors are deemed
equally important, a domination approach is applied instead,
i.e., sorting teams according to non-dominating factors (e.g.,
based on total cost of team formation) and picking the best
front solution (i.e., lowest cost team).

Closer to our setting, (Machado and Stefanidis 2019) pro-
posed brute force and heuristic approaches to create team
recommendations in multidisciplinary projects, where most
suitable candidates are incrementally selected until project
requirements are fulfilled. However, unlike our work, they
do not use any metrics to quantitatively measure the effec-
tiveness of recommended teams, and additionally assume
that an individual member may completely fulfill one skill
requirement. The complexity of making multi-criteria de-
cisions and building successful teams also increases with
the number of available candidates. Evaluating the good-
ness of every team permutation quickly becomes computa-
tionally prohibitive and NP-hard (Roy et al. 2014). The se-
mantics of group recommendation algorithms were also de-
fined by a means of a Consensus Function, where disagree-
ment amongst group members was introduced as a factor
to influence the generated recommendations (Amer-Yahia
et al. 2009). Alternatively, methods have also been proposed
to seek a certain level of agreement amongst group mem-
bers, where individuals preferences are iteratively brought
closer, until a desired threshold is achieved (Castro et al.
2015). Search-based optimization techniques were also ex-
plored using a queuing simulation model to maximize re-
source usage in software project management (Di Penta,
Harman, and Antoniol 2011). Another application of team
formation is in entrepreneurial domains (Lazar et al. 2020),
where entrepreneurs search for trustworthy partners and in-
vestors when building new ventures.

Existing literature systematically answers many questions
regarding what, why, and how teams are formed (Costa et al.
2020; Juárez, Santos, and Brizuela 2021). However, recruit-
ing a group of experts to work towards a common goal does
not guarantee that they will always operate as a team.

Drawbacks of Single-Item Recommendation. A com-
mon objective of many recommender algorithms (Su and
Khoshgoftaar 2009; Cremonesi, Koren, and Turrin 2010) is
to learn each individual’s preferences through his interac-
tions with a system, estimate his satisfaction for items he has
not interacted with before, and return the top-k items with
highest estimated ratings. However, many single-item rec-
ommender systems suffer from known issues such as pop-
ularity bias, where suggestions show an uneven distribution
in recommending similar items, and the cold start problem,
a state where a new user wishes to interact with a system
but there is not enough information about his preferences to
make an accurate decision.

Motivation. We therefore expand on our prior work,
ULTRA (University-Lead Team Builder from RFPs and
Analysis) (Srivastava et al. 2022), and consider a group rec-
ommendation setting that promotes research collaboration
using novel AI methods to recommend optimal teaming sug-
gestions. Our work encourages multi-functional and inter-



disciplinary teams to form, and brings together members
from various disciplines of work responsibility.

3 Problem Setting
3.1 Problem Formulation
In this section, we introduce the domain of our work and
provide the groundwork for the problem. Funding agencies
periodically announce Requests For Proposals (RFPs) on
specific themes where they are looking for ideas to fund.
Researchers in turn respond to those calls, with propos-
als, where they explain their ideas and detail a meaningful
and actionable plan for how they plan to achieve said goals
within a specific allotted budget, time frame, and other con-
straints. In doing so, they also often look to team with other
colleagues to respond to such calls. As such, we consider
a teaming environment where the availability of candidate
participants may change at any given time, often sporadi-
cally.

In terms of terminology, let S denote the set of all skills.
Then, the demand for teaming is represented by the set of
skills Si desired by an RFP ci. Further, the supply is rep-
resented at an institution by the set of researchers R along
with their respective research interests and profiles to satisfy
the demand. Teaming objectives may be short-term (ST ),
long-term (LT ), or a combination of the two. An example
of a short-term goal would be to meet the immediate re-
quirements and skill needs, S = {s1, s2, ..., sα} set forth
by a call for proposal ci. Each call in C = {c1, c2, ..., cM}
requires a very specific skill set Si and an immediate and
optimal assembling of available candidate researchers, R =
{r1, r2, ..., rN}. We then solve our teaming setup in three
phases: (1) we first match all researchers who may be of in-
terest to the calls based on skills needed, (2) group which
subset of researchers should be recommended to be in a
team ti, and (3) compute goodness score gi for each team in
T = {t1, t2, ..., tβ} and recommend the top-k suggestions to
interested users.

Similarly, some example scenarios of a long-term objec-
tive would be to maximize the number of funded awards A
given to a researcher rj over a time period (LTA

t ), have a
robust (diversified) pool of experienced talent (LTR

t ), and
satisfy diversity goals of researchers’ institutions.

Our system would be of interest to at least two types of
users: (1) administrators at researchers’ organizations (e.g.,
university institutions) who want to promote more collab-
orations, proposals, and diversity at their institutions, and
(2) potential team members who will respond to a given
RFP ci and are looking for collaborative opportunities. Var-
ious environments call for different teams to be formed and
matched with relevant opportunities. The candidate member
set also may change over time, along with each of their skills
and research interests.

Each user (i.e., admin or researcher) will interact with
the system when a call for proposal ci is announced. Based
on the requirements set by ci, along with profiles extracted
from researchers, the system will then algorithmically sug-
gest teaming choices T = {t1, t2, ..., tβ}, which the users
may accept or reject. We evaluate the efficacy of our algo-

rithms and validate the teaming outputs via a goodness score
(see Section 4.1).

3.2 Use Cases
We show at least three practical use cases (UCs) to demon-
strate the utility of our system. Each use case has various
input prompts to select from and includes different algo-
rithms that can be used to recommend or suggest proposals
and teams to interested users.

For the first use case, UC1, given a researcher’s name and
a teaming method Mi, we display a list of k highest ranked
proposals and possible teams (shown in Figure 1). Similarly,
for UC2, given a proposal call ci from a list of recently an-
nounced proposals C (ideally refreshed in real-time or regu-
larly), we display the best possible teams T available for ci.
And the final use case, UC3, takes input in the form of a re-
search interest and teaming method, and displays respective
matching proposals and teams for those parameters. We em-
pirically evaluate the three use cases and the functionality of
the four methods used in Section 5.2.

4 System Design
In this section, we describe the general architecture of our
system and its most important components.

4.1 Metrics
A challenge in team recommendation scenarios is how to
adapt to a group as a whole, given individual preferences of
each member within a group (Boratto et al. 2010). Literature
on team collaboration emphasizes that teams be organized
to ensure diversity of team members (He, von Krogh, and
Sirén 2022) Additionally, when it comes to the relationship
between collaboration and scientific impact, team size also
matters. While equally dependent on the number of require-
ments and time constraints set forth by an RFP, evidence
also suggests that shorter teams also yield quick outputs, as
they allow for higher accountability, autonomy, and flexibil-
ity amongst team members (Trope 2023).

In traditional literature on recommendation, there are met-
rics to measure the position of a (single correct) result (e.g.,
mean reciprocal rank (MRR) and top-k for ranking). How-
ever, our focus is on metrics that reflect the goodness of mul-
tiple good results (i.e., team recommendations). Still, posi-
tional metrics are important since they reflect users’ accep-
tance of the results. We have implicitly incorporated them by
displaying teaming results in descending order of the team
goodness score. Therefore, by incorporating both consider-
ations (team quality and user acceptance), for each candi-
date team ti, we measure its effectiveness towards ci using a
goodness score gi. The score denotes the chances of success
for a team to fulfill the requirements of ci, and is computed
by taking the weighted mean of four configurable metrics:
redundancy, set size, coverage, and k-robustness. We now
explain the metrics used, along with how goodness is calcu-
lated for a team.

Redundancy. This is defined as the percentage of de-
manded skills that are commonly shared amongst multiple
researchers. A trade-off that arises with skill redundancy is



team robustness versus diversity. While an increased redun-
dancy ensures expert competence within a group of skills, it
also risks limiting the amount of skill diversity that a team
has.

Set Size. This metric is defined as the size of the candidate
team. A trade-off present here is skill coverage and robust-
ness versus funding amount split per researcher. A smaller
team size runs the risk of not being able to accomplish the
necessary goals of the proposal call (e.g., due to unavailabil-
ity of any team members, longer efforts needed to complete
a task), whereas a larger one mitigates that risk but lowers
the amount of funding that each researcher receives. In ad-
dition, large teams lead to other disadvantages such as un-
equal participation amongst members, longer time needed
to make decisions (e.g., due to intrinsic conflicts or lack
of timely communication), whereas a smaller team fosters
for accountability, individuality, and flexibility in ideas and
schedules (McLeod, Lobel, and Cox Jr 1996).

Coverage. This metric represents the percentage of
proposal-required skills that are satisfied by the candidate
team as a whole. A candidate member’s skills are defined
from those listed within their personal webpages and ex-
tracted from other research profiles such as Google Scholar.
We devise this metric by borrowing the idea that diverse
expertise often invites individuals with different perspec-
tives but also may lack common shared experience (He,
von Krogh, and Sirén 2022). A mix of team members with
diverse knowledge, skill sets, and abilities have also been
thought to bring forth their unique skills to the team and
provide it with the broadest possible skill set.

k-Robustness. We borrow this metric from (Okimoto et al.
2015), where each team needs to be able to equally satisfy
the teaming constraints even after the removal or unavail-
ability of k researchers. Such a team is defined as k-robust.

Goodness Score. We first normalize the aforementioned
metrics to make their values query-independent. Next, we
assign each of the metrics a predefined weight by default.
Given our use cases, the weights are defined by the intuition
to yield the maximum profit (i.e., project completion) and
credibility (i.e., project quality) a team can achieve. A high
coverage and robustness are therefore more desired for over-
all project success, whereas high redundancy and set size
are less prioritized. As a result, for each candidate team ti,
we penalize the latter two metrics and reward the former.
The penalized metrics are set to a negative weight of −1,
whereas the desired ones are set to a positive weight of +1.
Finally, the goodness score for a team is calculated using the
weighted mean from all four metrics. The diversity of met-
rics increases the potential to provide strength and resilience
to the overall model. For additional reference, we make our
metrics tool publicly available on GitHub 2.

4.2 Methods
M0: Random Team Formation. We consider random
team selection as our baseline, where candidate teams are

2Metrics tool: https://github.com/ai4society/Ultra-Metric

Algorithm 1: M0: Random Team Formation

Input: Calls C = {c1, . . . , cM}, Researchers
R = {r1, . . . , rN}

Output: Teams T = {t1, . . . , tβ}, good. scores
G = {g1, . . . , gβ}

1: for ci ∈ C do
2: T = {}, G = {}
3: for j = 1, 2, . . . , β do
4: Let tj be a k random sampling of N researchers.
5: T = T

⋃
{tj}

6: Compute goodness score gj for team tj .
7: G = G

⋃
{gj}

8: end for
9: end for

formed in a randomized manner, without any adherence
to the skills in demand, and matched to an arbitrary pro-
posal, regardless of relevance. Given any ci, we select a ran-
dom number of individuals from a pool of N available re-
searchers to form teams T . Using our goodness function,
we next evaluate each team tj by extracting the skills Si re-
quired by the proposal ci and checking how many are solv-
able by the team at hand. Algorithm 1 provides pseudocode
for M0.

Algorithm 2: M1: Team Formation Using String Matching

Input: Calls C = {c1, . . . , cM}, Researchers
R = {r1, . . . , rN}, string matching threshold thM1

Output: Teams T = {t1, . . . , tβ}, good. scores
G = {g1, . . . , gβ}

1: for ci ∈ C do
2: T = {}, G = {}
3: Extract technical skills Si = {s1, s2, . . . , sα} for each ci.
4: Initialize candidate researchers = [].
5: for s ∈ S do
6: for j = 1, 2, . . . , N do
7: if s is in σ(rj) by satisfying thM1 then
8: Add rj to candidate researchers [].
9: end if

10: end for
11: end for
12: Using candidate researchers [], form each team tk, pri-

oritizing members with highest string matches.
13: T = T

⋃
{tk}

14: Compute goodness score gk for each team tk.
15: G = G

⋃
{gk}

16: end for

M1: Team Formation Using String Matching. Given a
call for proposal ci, we extract the technical skills required
from it using its title and synopsis as inputs. We remove stop
words and delimiters and use keyword extraction to gather
only the relevant skills needed in Si. Similarly, we gather the
research interests each available researcher rj has listed on
their personal webpage and demonstrated with their Google
Scholar history. We denote this as σ(rj). We then check if
there are any common interests between σ(rj) and Si. Given



a pattern string of length x and a target string of length y, we
determine if there is any overlap between those two using
a string-match threshold thM1. Algorithm 2 provides pseu-
docode for M1.

Algorithm 3: M2: Team Formation Using Taxonomical
Matching

Input: Calls C = {c1, . . . , cM}, Researchers
R = {r1, . . . , rN}, string matching threshold thM2

Output: Teams T = {t1, . . . , tβ}, good. scores
G = {g1, . . . , gβ}

1: for ci ∈ C do
2: T = {}, G = {}
3: Extract technical skills Si = {s1, s2, . . . , sα} for each ci.
4: Calculate n-grams from ci, and add to Si.
5: Using thM2, map each s ∈ Si with relevant classification

codes from ACM-CCS, i.e., δ(Si).
6: Initialize candidate researchers = [].
7: for j = 1, 2, . . . , N do
8: Using the same thM2, calculate δ(σ(rj).
9: if δ(Si)

⋂
δ(σ(rj)! = ∅ then

10: Add rj to candidate researchers [].
11: end if
12: end for
13: Using candidate researchers [] and for each rj , form

each team tk, prioritizing members with highest taxonomical
matches.

14: T = T
⋃
{tk}

15: Compute goodness scores gk for each team tk.
16: G = G

⋃
{gk}

17: end for

M2: Team Formation Using Taxonomical Matching.
We further improve the accuracy and precision of the pre-
vious methods, M0 and M1, by considering query-based se-
mantic matching, combined with the use of a taxonomy. We
use a poly-hierarchical, subject-based ontology, provided
by the ACM Computing Classification System (CCS) (ACM
2012). There are over two thousand topics listed that broadly
reflect the research areas pursued in the computing disci-
pline. These are further organized into categories and con-
cepts, with up to four branches of structure. We use this on-
tology to determine if two research skills may be matched
semantically rather than only string-wise. For instance, if
two researchers, ra and rb, each had the respective skills,
“natural language processing” and “knowledge representa-
tion”, the method M1 will return an extremely low string-
match score and deny any association between the terms.
However, using ACM-CCS, M2 will categorize these two in-
terests under “artificial intelligence” and consider the pos-
sibility that ra and rb may belong within the same team for
a call ci.

Given a call for proposal ci, we extract the relevant skills
needed, Si. For each skill in Si, we then use n-grams to com-
pare each sequence of words with the concepts in ACM-
CCS using a string match threshold thM2. We denote this
step with δ(Si). Each concept is mapped to a specific code,
and we use those codes to search for candidate researchers.
For each available researcher rj , we first extract their re-

search interests σ(rj). For each interest, we similarly cal-
culate δ(σ(rj)) to get the relevant codes from ACM-CCS.
Finally, we form teams and calculate goodness based on a
match between the codes. Algorithm 3 provides pseudocode
for M2.

Algorithm 4: M3: Team Formation Using Boosted Bandit

Input: Calls C = {c1, . . . , cM}, Researchers
R = {r1, . . . , rN}

Output: Teams T = {t1, . . . , tβ}, good. scores
G = {g1, . . . , gβ}

1: function BOOSTEDTREES(predicates)
2: for p ∈ predicates do
3: Let I be a pre-set number of iterations.
4: for i = 1, 2, . . . , I do
5: Generate examples for the regression-tree learner:

GENERATEEX(p, predicates, F p
i−1)

6: Get new regression tree, which approximates func-
tional gradient △i(p), and update current model F p

i .
7: end for
8: Get final potential: ψI = ψ0 +△1(p) + . . .+△I(p)
9: end for

10: return
11: end function
12: function GENERATEEX(p, predicates, F )
13: Initialize examples E = ∅.
14: for j = 1, 2, . . . , Xp do
15: Calculate probability of predicate p being true.
16: Compute gradient and update regression examples.
17: Compute regression values based on the groundings of

current example.
18: end for
19: return regression examples E.
20: end function
21: for ci ∈ C do
22: T = {}, G = {}
23: Extract technical skills Si = {s1, s2, . . . , sα} for each ci.
24: Initialize candidate researchers = [].
25: Initialize predicates[].
26: Show associations between (ci, Si), and (rj , σ(rj)) as

predicates[].
27: Get candidate researchers from

BOOSTEDTREES(predicates) and add to
candidate researchers []. Form each team tk, priori-
tizing members with highest probability matches.

28: T = T
⋃
{tk}

29: Compute goodness score gk for each team tk.
30: G = G

⋃
{gk}

31: end for

M3: Team Formation Using Boosted Bandit. According
to requirements of proposals and expertise of researchers,
the previous three methods apply manually-crafted rules to
matching researchers to teams. However, M3 extracts rules
automatically from data. With more facts and data provided,
this method is able to learn more complex rules automati-
cally. We consider the strategy taken by (Kakadiya, Natara-
jan, and Ravindran 2021), and formulate the problem as
team recommendation using contextual bandits. The key
idea is that given the skills required by proposals and the
research interests/expertise (denoted as x), the goal is to



learn P (y | x) where y is whether a researcher is a po-
tential candidate for the proposal. This is to say that y is
a two-argument predicate candidate(rj , ci), which states
that the researcher rj is a candidate for the proposal ci. The
key idea in boosted bandit is to represent this as a sigmoid,
P (y | x) = eψ(y|x)∑

y′ e
ψ(y′|x) and boost this using the machin-

ery of gradient-boosting (Friedman, Hastie, and Tibshirani
2000; Dietterich, Ashenfelter, and Bulatov 2004). Since our
data is naturally relational, we adapt the relational boosted
bandits for this case (Kakadiya, Natarajan, and Ravindran
2021).

We havem regression trees for each predicate p, wherem
is the number of time steps or iterations. Each iteration ap-
proximates the corresponding gradient for p, and each of the
trees serve as individual components for the final potential
function ψ. The algorithm BOOSTEDTREES(predicates)
then loops across all predicates and learns the potentials
for each. The set of regression trees for each predicate then
forms the structure of the conditional probability distribu-
tion and the set of leaves of each tree form the parameters of
the conditional distribution.

Algorithm 4 provides the pseudocode for M3. We first
represent all data in the form of predicates. There are three
types of relationships: (1) every call for proposal ci mapped
to a skill set Si, (2) every researcher rj mapped to their
research interests σ(rj), and (3) every call for proposal ci
teamed with a group of researchers R according to the de-
mand and supply. For each predicate p (shown in BOOST-
EDTREES(predicates)), we generate multiple examples E
for our regression-tree learner to get new regression trees
and update the current model F p

i at every iteration i. The
function GENERATEEX(p, predicates, F p

i−1) iterates over
all the examples E and computes probability and gradient
for each. These probabilities are later used to form teams
using a greedy policy, where candidate members with high-
est probabilities are prioritized first when forming teams.

4.3 ULTRA System and Survey Deployment
We built a UI for our system and deployed it using the three
use cases detailed in Section 3.2. ULTRA consists of a three-
layered architecture: (1) data storage and retrieval, (2) team
matching, and (3) analysis of results. (1) The data we used
to perform our experiments is publicly available: (a) calls for
proposals from NSF archives, and (b) faculty directories at
our university. These are retrieved and stored in a separate
database, where they are periodically refreshed to get the
latest information. (2) We use the input data and a matching
method to view teaming results, along with their respective
goodness scores. (3) We evaluate the results both computa-
tionally and empirically (see Section 5).

We measure the quality of teaming suggestions, and user
satisfaction by conducting a user study for ULTRA over
a span of 28 days. We invited researchers from a college
within our university to explore the tool and assess its func-
tionality and satisfaction using a feedback survey for every
result. The survey includes two 5-point Likert Scale ques-
tions: (1) How relevant is the output given the input?, and
(2) How useful is the output?. We also provide a freeform

Method Average Quality Average Volume

M0 0.0879± 0.0290 10
M1 0.3673± 0.1569 10
M2 0.4097± 0.1313 9
M3 0.5295± 0.0816 6

Table 1: Average quality (G) and volume of teams (#T )
shown per researcher (rj) at USC. This was done for each
method Mi, across 434 RFPs and 200 researchers. For av-
erage quality, we report the mean and standard deviation,
denoted as mean±STD.

section for additional comments, if any.

5 Evaluation
5.1 Computational Evaluation of Output
Quality vs. Volume of Teams. For each method, we as-
sess the quality (goodness) and volume (size) of each team-
ing suggestion that every researcher rj receives per ev-
ery call for proposal ci. Our experiments iterate across a
dataset of 434 RFPs and 200 researchers. For each call, ev-
ery researcher has a maximum cutoff of 10 teams. For each
method, we then find the average goodness (G) of teams
(T ) a researcher rj has been recommended. The more ad-
vanced the method, the better teams a researcher receives.
We observe another unique trade-off as a result, where teams
formed algorithmically led to an increased precision and
quality, and a notable decrease in quantity. M0, random team
formation, showed poor quality in results with an average
goodness of only 0.0879, despite the number of teams be-
ing abundantly available. M3, on the other hand, shows a
decrease in the number of teaming choices available for a
researcher, but a visible increase in quality, compared to the
average goodness for M0. Table 1 shows the overall results.

5.2 Human Evaluation of Output
We deployed our tool at a college-wide level and requested
participation from faculty members. This research study has
been IRB-approved by our university (IRB# Pro00127449)
and reflects an observational (unmonitored) qualitative anal-
ysis, where we make the tool publicly available and give par-
ticipants a demo of its usage but do not actively control their
actions. This helps us receive many responses quickly and
at a low cost, albeit not without its own limitations. For in-
stance, it does not require users to explore all use cases and
methods. Therefore, we only make inferences from data that
is recorded and do not draw any from those that are left out.
As a possible future work, we can perform a controlled qual-
itative analysis, where we request participants to come to a
designated lab, try every pathway, and give feedback. This
will then enable us to answer how a user compared the ef-
fectiveness of each method on the same example.

We received a total of 212 responses. Regarding relevancy
of outputs, 157 answers were rated as very relevant and 34
as somewhat relevant, summing to 90.09% of all responses.
Similarly, in terms of tool utility satisfaction, 172 answers



Qualitative Results
Comments 1. “This is incredible and has a lot of

potential. Can’t wait for this to be in real
time!”
2. “Very well thought out! Great resource
to the university”
3. “Lots of new people to choose from
here! Great work!”
4. “Very useful tool overall, I could see the
practical usage of this work!”
5. “Would love an explanation for all of
your methods used!!”

Feedback 1. “Seeing many team pitches here from
interdisciplinary domains. Can we choose
from say, two, settings where we may
choose to work with those from a similar
domain or a different one? And how so is
the overall goodness score calculated?”
2. “A search bar would be great for this
one, not just a dropdown!”
3. “In addition to the proposal, can we
also add research interest as a user-given
input? As a merging of the second and
third use cases”
4. “can we build our own teams for a
grant?”

Table 2: A sample of the comments as well as feedback for
improvement received from the human study.

responded with very useful and 35 with somewhat useful, to-
taling 97.64% of all responses. Figure 2 shows a more quan-
titative breakdown of the responses and Table 2 highlights a
few comments and feedback we received.

We observe two repeated patterns of responses regarding
M0: (1) Teaming choices that were rated as ‘somewhat irrel-
evant’ or ‘irrelevant’, yet still ‘very useful’, and (2) teaming
choices that were rated as ‘very relevant’, despite the irrel-
evancy in the results. Upon analyzing the comments, some
mentioned that M0 could regardless be useful in working
with new colleagues from other departments and ‘expand
new connections’ as a result. Furthermore, we have only re-
quested users to judge the usability and functionality of our
tool, not immediate applicability. They may also be unaware
of each candidate member’s skill set, which impedes on their
ability to accurately quantify a team’s success. Due to that,
there is a need and role of AI in teaming, as reflected in
comments as well. We also factor this intuition into the in-
terpretation of results.

6 Discussion - Ultra as a Deployed Application
and Its Generality

In this section, we discuss the characteristics of ULTRA as
required for a deployment track paper but not discussed else-
where. We describe its development experience leading to

Method Average Quality Average Volume

M0 0.0896± 0.0006 10
M1 0.4218± 0.0011 8
M2 0.4292± 0.0017 7
M3 0.5835± 0.0203 1

Table 3: Average quality (G) and volume of teams (#T )
shown per researcher (rj) at IIT-R. This was done for each
method Mi, across 100 RFPs and 46 researchers. For av-
erage quality, we report the mean and standard deviation,
denoted as mean±STD.

deployment at a US university. We also demonstrate its gen-
erality by considering an altogether different setting from
India but leading to similar results: with increased sophis-
tication of methods, the quality of teams increase and the
amount of recommended teams decrease.

6.1 Development and Deployment

The development of ULTRA first began in Summer 2021
with a team of 8 developers and an initial prototype was
created within 3 months with M0 and M1 for user feed-
back (August 2021). It included a very small dataset of re-
searchers and RFPs, a single method (i.e., a string-based
matching algorithm and greedy teaming strategy), no good-
ness score and instead only a match percentage threshold,
and a smaller-scale empirical evaluation with a few experts
at a single University that indicated the promise of such a
tool. Once the pilot study results seemed promising, UL-
TRA was refreshed with additional data; re-imagined and
re-designed in Fall 2022; improved through iterative review,
feedback, and testing; enhanced with M2 and M3, and alpha-
tested with users from different departments at the Univer-
sity of South Carolina for a year. The system was deployed
on May 1, 2023 and evaluated under an IRB-approved pro-
tocol for 28 days, and the results are as reported in the pa-
per. It remains publicly available as of writing this paper
(November 2023). During July-August 2023, we evaluated
ULTRA with data from another setting in a different coun-
try: researchers at Indian Institute of Technology-Roorkee
(IIT-R), India and calls from India’s funding agencies.

One main challenge during development was access to
clean data related to RFPs and relevant researcher profiles.
Due to inconsistencies in data formatting, missing values,
and irrelevant or out-of-date entries, exploring automated
approaches had been unsuccessful, and data cleaning had
only been possible through iterative collaborations. After de-
ployment, additional challenges were raised. One challenge
was maintaining data integrity across changes to ULTRA’s
servers and infrastructure, and another was change in re-
searchers over time due to hiring or attrition. It was essen-
tial to run frequent tests to enhance user experience, create
a working feedback loop, and ensure a scalable architecture
with minimal overhead.



Figure 2: Sankey breakdown of the 212 responses we received from our human study. It shows four categories of nodes: (1) use
cases, (2) methods, (3) scale of relevancy, and (4) scale of usefulness. Each line maps a connection from node type to another,
showing the flow of interaction that users had with ULTRA.

6.2 Generalizing to Second Institution: IIT-R
We additionally extended ULTRA to another university in a
different region of the world: Indian Institute of Technology-
Roorkee (IIT-R), India. We gathered publicly available data
on RFPs from the Department of Science & Technology
(DST), a division of Research and Development (R&D) pro-
grammes belonging to and funded by the Government of In-
dia’s Ministry of Science and Technology (DST 2023). We
further collected data about IIT-R’s faculty members and
their respective research profiles. Our initial evaluation is
with 100 RFPs and 46 researchers. Table 3 shows the com-
putational evaluation of ULTRA on IIT-R’s data. From the
quantitative results, we observe a similar trend to Table 1,
where teams formed algorithmically led to an increased pre-
cision and quality, and visible decrease in quantity. Since hu-
man study at any institution is subject to local policies and
workplace culture, we leave performance of such a study at
IIT-R as a future work.

7 Conclusion
To conclude, we presented the problem of building teams for
funding that allows for collaboration opportunities. We then
created and implemented AI methods using string, taxon-
omy, and more advanced contextual boosted bandits in UL-
TRA, and demonstrated them to be quite useful both quan-
titatively (where informed methods increase recommenda-
tion quality while reducing their volume) and qualitatively
in real human evaluations. We showed the generality of our
approach in two different settings from US and India, and
discussed our experience of deploying the system.

One area to extend our work is by considering larger data
sizes for both researchers and RFPs, and from more diverse
sources. Furthermore, since our methods are dependent on
open data about researchers as well as proposal calls, this
dependency can be both a source of strength and weakness.
Data has the potential to encourage teaming without human
bias but can also lead to inferior recommendation if the data

is obsolete. Similarly, any feedback on the success of rec-
ommendation is only possible when a proposal has been
won, and this data is usually not available or quite delayed
(months or years after recommendation) to be useful. Con-
sidering a longer time frame for recommendation with pro-
posal success data could lead to better results. Another area
is to further enhance our goodness score with more metrics
(e.g., considering the relevance of a researcher’s previous
projects to current RFPs and the number of ongoing projects
a researcher is engaged in).

Our work inspires several interesting future extensions:
considering a variety of domain knowledge including but not
limited to fairness constraints, teaming constraints, domain
constraints, etc. and developing a knowledge-driven learning
system that can both exploit both the data and such knowl-
edge remains an exciting future direction. A second direc-
tion would be to develop methods that would allow for in-
teractive teaming where the system could not only present
the recommendations but explain why and allow for human
inputs to be used for refining the learned models. In addi-
tion, the scale of our survey could also be improved to ask
about more aspects of the teams from participants: diversity
and the connection strength between members, etc. A final
and important direction is to scale this to different collabora-
tive settings including but not limited to: healthcare, finance,
law/legal, mental health, and educational support.
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