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Abstract

Rubik’s Cube (RC) is a popular puzzle that is also computa-
tionally hard to solve. In this demonstration, we introduce the
first PDDL formulation for the 3x3 RC and solve it with an
off-the-shelf Fast-Downward planner. Notably, we submitted
this PDDL domain to the International Planning Competition
(IPC) 2023’s Classical track, where it emerged as one of the
toughest domains to solve. We also create a plan executor
and visualizer to show how the plan achieves the intended
goal. Our system has two types of audiences: (a) planning re-
searchers who can explore a hard problem and improve their
planning algorithms, and (b) RC learners1 who want to learn
how to solve the puzzle at their own pace and can now modify
an initial plan (e.g., manually, using other algorithms) and see
their execution. See video at: https://youtu.be/YQZ2sj-x5js.

Introduction
As artificial intelligence (AI) continues to solve problems
that humans struggle to solve, there is an emerging need for
humans to understand these solutions so that we can trust AI,
create new educational opportunities, and even discover new
knowledge. Many of these problems are path-finding prob-
lems. That is, the problem is to find a sequence of actions
(a path) to go from an initial state to a goal state. AI has
been successfully applied to solve the Rubik’s Cube (RC)
(Agostinelli et al. 2019; Lakkaraju et al. 2022; Joyner 2008;
Agostinelli et al. 2021) but these methods used opaque learn-
ing techniques which are hard for RC learners to benefit
from.

While no PDDL encoding of a 3x3x3 RC problem is
known to the authors, there is previous work2 for a 2x2x2
RC setting and is solved with the Fast-Forward planner. Au-
thors in (Büchner et al. 2022) modeled the RC problem in fi-
nite domain representation, which enables the common gen-
eral purpose solvers to be used on the RC problem. Our con-
tributions are:

• Introducing the first PDDL formulation for a 3x3x3 RC, a
significant advancement that was subsequently submitted
to the International Planning Competition (IPC) 2023.
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1Individuals learning to solve the Rubik’s Cube
2https://wu-kan.cn/2019/11/21/Planning-and-Uncertainty/

Figure 1: Rubik’s cube description to define the domain en-
coding. For example, cube pieces 5, 6, 7, and 8 are in the
right face

• Enabling RC learners to use off-the-shelf planners to find
custom and optimized ways to solve any given RC con-
figuration.

Moreover, for the learning-based RC solvers, which have
been shown to scale to large instances, our PDDL model can
be used as a labeled data generator for training. A demon-
stration can be seen at https://youtu.be/YQZ2sj-x5js.

System Description
RC representation in PDDL In the PDDL domain, the

Rubik’s cube problem environment has been defined by as-
suming the cube pieces are in a fixed position and are named
accordingly. as defined in Figure 1. These fixed cube pieces
are modeled as predicates in the RC domain and the colors
they possess in the three-dimensional space as parameters of
these predicates. With the help of conditional effects, each
action in the RC environment is defined as the change of
colors on these fixed cube pieces. The 3D axis of the cube
is considered as three separate parameters X, Y, and Z that
specify the position of the colors on the cube’s pieces. One
of these axes can be connected to each face of the cube. Ac-
cording to the representation shown in Figure 1, the respec-
tive faces on each axis are: FX = ⟨U,D⟩; FY = ⟨F,B⟩;
FZ = ⟨R,L⟩. These different faces of the cube can be iden-
tified by the color of the middle cube piece. We considered
White, Red, and Green colors as the colors on the front(F),
up(U) and right(R) faces respectively (similarly, the counter
colors on the counter faces).
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Figure 2: System Architecture.

Listing 1: Action L of Rubik’s Cube modeled in PDDL
(:action L
:effect (and
;for corner cubelets
(forall(?x ?y ?z)(when (cube1 ?x ?y ?z)

(and (cube2 ?y ?x ?z))))
(forall(?x ?y ?z)(when (cube3 ?x ?y ?z)

(and (cube1 ?y ?x ?z))))
(forall(?x ?y ?z)(when (cube4 ?x ?y ?z)

(and (cube3 ?y ?x ?z))))
(forall(?x ?y ?z)(when (cube2 ?x ?y ?z)

(and (cube4 ?y ?x ?z))))
;for edge cubelets
(forall(?x ?z)(when (edge13 ?x ?z)
(and (edge12 ?x ?z))))

(forall(?y ?z)(when (edge34 ?y ?z)
(and (edge13 ?y ?z))))

(forall(?x ?z)(when (edge24 ?x ?z)
(and (edge34 ?x ?z))))

(forall(?y ?z)(when (edge12 ?y ?z)
(and (edge24 ?y ?z))))))

Generating and Visualizing the Plan Our system’s PDDL
encoded RC solver, in combination with a Visualizer, gen-
erates plan actions to solve the problem using the Fast-
Downward (FD) AI planner. We have used the publicly
available three-rubiks-cube npm package 3 for 3D RC vi-
sualization. AI planners are controllable in generating the
desired plans. We can specify the search algorithm and
the heuristics to the Fast-Downward planner. Each differ-
ent search algorithm generates different plans to reach the
goal state. We employed A* search algorithm in combination
with different heuristics which supports conditional-effects
in our system and gives plans in minutes.

The system architecture is shown in Figure 2. The users
need to upload the domain file4 and the problem file of RC

3https://github.com/lab89/three-rubiks-cube
4Available at IPC-2023 GitHub Repository

and select a heuristic of their choice from the dropdown
menu. The uploaded domain file and problem file along with
the selected heuristic are sent to the API endpoint. The RC
visualizer is scrambled to match the initial state from the
uploaded problem file. On the back end, the Fast-Downward
Planner based on A* search along with the selected heuris-
tic evaluates the uploaded problem and generates a solution.
This solution is provided to the visualizer to solve the RC.
The user may visually follow the actions in the plan file gen-
erated to observe the RC being solved step by step. Addi-
tional information on the parameters of search time, total
time, evaluated states, expanded states, and generated states
are also displayed in the front end.

Conclusion

In this work, we have demonstrated the capability of a plan-
ner to solve a complex puzzle, i.e., Rubik’s Cube. For realiz-
ing this, we have created the first PDDL domain for RC. This
approach not only facilitates a deeper understanding and in-
terpretability compared to dedicated black-box solvers but
also opens up new avenues for research in this field (Mup-
pasani et al. 2023). In order to make the generated plan un-
derstandable by people outside the planning community as
well, we have integrated the generated plan with a visualizer
showing step-by-step moves to achieve a fully solved RC. In
the future, we would like to perform a comparative study of
the performance of various planners and different encodings
(PDDL vs. SAS+) to solve a given RC configuration. Addi-
tionally, an empirical study on the performance of abstrac-
tion heuristics on the RC modeled in PDDL, which showed
some promising results on SAS+ encoding of RC (Büchner
et al. 2022), would be interesting. Integration of a suitable
plan validator would be needed so that human-edited plans
can be verified before execution (currently, VAL (Howey,
Long, and Fox 2004) does not handle conditional effects).
This would help us to assist a learner to solve RC under var-
ious constraints such as time or moves.
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