
Towards Effective Planning Strategies for Dynamic
Opinion Networks

Bharath Muppasani, Protik Nag, Vignesh Narayanan, Biplav Srivastava, and Michael N. Huhns
Department of Computer Science

University of South Carolina, USA
bharath@email.sc.edu

Abstract

In this study, we investigate the under-explored intervention planning aimed at
disseminating accurate information within dynamic opinion networks by leveraging
learning strategies. Intervention planning involves identifying key nodes (search)
and exerting control (e.g., disseminating accurate/official information through the
nodes) to mitigate the influence of misinformation. However, as network size
increases, the problem becomes computationally intractable. To address this,
we first introduce a novel ranking algorithm (search) to identify key nodes for
disseminating accurate information, which facilitates the training of neural network
(NN) classifiers for scalable and generalized solutions. Second, we address the
complexity of label generation (through search) by developing a Reinforcement
Learning (RL)-based dynamic planning framework. We investigate NN-based RL
planners tailored for dynamic opinion networks governed by two propagation
models for the framework. Each model incorporates both binary and continuous
opinion and trust representations. Our experimental results demonstrate that
our ranking algorithm-based classifiers provide plans that enhance infection rate
control, especially with increased action budgets. Moreover, reward strategies
focusing on key metrics, such as the number of susceptible nodes and infection
rates, outperform those prioritizing faster blocking strategies. Additionally, our
findings reveal that Graph Convolutional Networks (GCNs)-based planners
facilitate scalable centralized plans that achieve lower infection rates (higher
control) across various network scenarios (e.g., Watts-Strogatz topology, varying
action budgets, varying initial infected nodes, and varying degree of infected
nodes).

1 Introduction

The spread of information across social networks profoundly impacts public opinion, collective
behaviors, and societal outcomes [1]. Especially during crises such as disease outbreaks or disasters,
there is often too much information coming from different sources. Sometimes, the resultant flood of
information is unreliable or misleading, or spreads too quickly, which can have serious effects on
society and health [6]. Online platforms such as Facebook, Twitter, and WeChat, while essential for
communication, significantly contribute to the swift spread of misinformation. This has led to public
confusion and panic in events ranging from the Fukushima disaster to the COVID-19 pandemic,
demonstrating the need for effective information management on these platforms. Furthermore, the
intentional dissemination of fabricated news, especially noted during significant political events such
as U.S. presidential elections, underscores the influence of misinformation on democratic processes
and highlights the urgent requirement for interventions to mitigate these impacts [2, 9].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

The first step in combating misinformation propagation is to detect misinformation. However,
detection alone is insufficient to effectively control its spread. Thus, it must be complemented
with strategic planning. While numerous studies have focused on rumor detection [44, 39, 32, 16],
comprehensive strategies for controlling misinformation are essential [12]. Existing research works
emphasize three primary strategies: node removal [7, 37, 24], edge removal [18, 16, 36], and counter-
rumor dissemination [3, 34, 10]. Node removal involves identifying and neutralizing key nodes
using community detection methods, with dynamic models that adapt to changes in propagation.
Edge removal focuses on disrupting misinformation pathways by strategically severing connections
between nodes. Additionally, counter-rumor dissemination promotes the spread of factual information,
leveraging user participation and ‘positive cascades’ to counteract misinformation. Authors in [27]
have formulated the information spread in networks as a search problem and generated sequential
plans using Automated Planning techniques for the targeted spread of information. These strategies
underscore the necessity of a multifaceted approach to effectively manage misinformation in social
networks. A review of relevant literature is presented in Appendix A.1.

Authors in [30] considered mitigating misinformation by identifying potential purveyors to block
their posts. However, taking strong measures like censoring user posts may violate user rights. To
address this, recent advancements have employed graph convolutional networks (GCNs) for both
detection and mitigation, analyzing structural and content-based data to identify and target rumor
patterns and key nodes. In our paper, we employ a strategy similar to [8, 11], which aims to reduce
the impact of misinformation by intervening in the spread of accurate information.

Previous studies have found ranking algorithms to be critical in identifying influential nodes within
complex networks, which can then be targeted to block, remove, or cascade information to reduce the
overall spread of misinformation [42, 13]. These algorithms rank nodes based on various metrics,
determining their importance or influence within the network.

We address the challenge of containing misinformation spread by effectively disseminating accurate
information through two learning methodologies. In our study, we propose a novel ranking algorithm
integrated with a supervised learning (SL) framework to identify influential nodes using a robust
feature set of network nodes and evaluate their performance. While this approach is effective in a
small-scale, we also develop reinforcement learning (RL)-based solution to this problem. In both the
cases, we investigate three distinct initialization settings for our network, ranging from discrete to
continuous representations of opinion and mutual trust. In a network of connected agents, we initially
consider a set of nodes that possess misinformation, which they propagate to their neighbors. Our
goal is to counteract this by disseminating accurate information to selected agents at each time step.
The agents receiving accurate information update their opinion to a level where they no longer believe
the misinformation and, consequently, cease to propagate it. The process ends when no agents are
left to receive the misinformation.

Example: Consider a research community discussing the NeurIPS submission deadline. In this
context, a topic is just a statement such as ‘NeurIPS submission deadline is on May 22’. An opinion
of an agent on this topic is defined as the belief of the agent in the truthfulness of the statement.
A positive (respectively negative) opinion value represents that the agent believes the statement is
true (respectively false). In our study, we consider the opinion value of an agent on a topic lies in
[−1, 1]. Figure 1 illustrates such a scenario where the red nodes represent the agents not believing

Figure 1: Example of misinformation propagation and control choices at each timestep. Blue nodes:
neutral (opinion value 0), red nodes: possess misinformation (opinion value −1), green nodes:
received accurate information (opinion value 1).

2

about the NeurIPS deadline being May 22. When they interact with other agents, they share this
misinformation, leading to a spread of incorrect information throughout the network. The blue nodes
represent neutral agents who are unaware of the deadline, and the green nodes represent agents who
believe in the NeurIPS deadline being on May 22. Initially, agents {0, 1} propagate misinformation
to their neighbors. To control the spread of this misinformation, timely control actions are taken
at each timestep to disseminate accurate information to selected agents. In the example, with an
action budget of 1, agents 7, 8, and 6 are sequentially chosen to receive the accurate information,
represented by the green nodes. Through these control actions, the example demonstrates how timely
intervention at critical points can effectively mitigate misinformation spread, ensuring agents are
accurately informed about the NeurIPS deadline. This mirrors real-world scenarios where strategic
dissemination of accurate information prevents widespread misunderstanding within a community.

Our paper makes several significant contributions to dynamic planning for containing misinformation
spread, focusing on the integration of more realistic and complex modeling approaches, label
generation techniques, and training methodologies: (a) We utilize a continuous opinion scale to model
the dynamics of misinformation spread, providing a more realistic representation of opinion changes
over time. (b) We develop a novel ranking algorithm for generating labels in networks with discrete
opinions, addressing a significant gap in efficient data preparation for SL algorithms in this domain.
(c) We propose an innovative RL methodology. This allows for adaptive intervention strategies in
response to evolving misinformation spread patterns, a critical improvement over traditional static
approaches. (d) Utilizing GCNs with an enhanced feature set of opinion value, connectivity degree,
and proximity to a misinformed node, we improve the training of models for selecting effective
intervention strategies. This enhancement ensures scalability and generalizes well across various
network structures, demonstrating the robust capabilities of GCNs in complex scenarios.

2 Problem Formulation

In this section, we discuss our approach to modeling the social network environment, the dynamics
of information propagation, and our strategy for containing misinformation.

2.1 Environment Description

A social network is formally represented as a directed graph G = (V,E), where V denotes the set of
nodes (agents), and E denotes the set of edges (relationships or connections) between agents [12].
The graph structure we consider for our study is undirected, indicating that relationships between
agents are bi-directional. Each node within the graph represents an individual agent, and each agent
holds a specific opinion on a given topic. An edge between any two nodes signifies a direct connection
or relationship between those agents, facilitating the exchange of opinions.

Opinion values are quantified within the range [−1, 1], representing different levels of sentiment,
and the weight assigned to each edge quantifies the mutual trust level between connected agents,
scaled within the interval [0, 1]. In our simulations, we explore three distinct cases of opinion and
trust values. While existing literature works have explored only binary opinion and trust models,
computational social science often models the opinion and trust values as continuous variables.
Investigation of planning strategies in continuous models remains under-explored. Case-1 involves
binary opinion values with binary trust, simplifying the network dynamics into discrete states. In
Case-2, we use floating-point opinion values while maintaining binary trust, allowing for a more
granular assessment of opinions while still simplifying trust dynamics. Finally, Case-3 features both
floating-point opinion values and floating-point trust, representing more realistic opinion and trust
relationships within the network capturing continuous variations.

2.2 Propagation Model

In the analysis of opinion networks, it is essential to understand how opinions form and evolve,
guided by the dynamics of trust among agents. In our analysis, the evolution and propagation of
opinions within opinion networks are modeled using a linear adjustment mechanism (discrete linear
maps), as described by the following transition function

xi(t+ 1) = xi(t) + µik(xk(t)− xi(t)), t = 0, 1, (1)

3

Equation 1 models the dynamics of opinion evolution, where the opinion of agent i at time t + 1
depends on its current opinion and the influence exerted by a connected agent k, who is actively
sharing some information with agent i, moderated by the trust factor µik. This model adapts
differently across various experimental setups as detailed below.

In Case-1 and Case-2, where mutual trust values are discrete {0, 1}, the application of Equation
1 results in immediate shifts in opinion. For example, if an agent i with a current opinion value of
0.5 on some topic is influenced by a connected neighboring agent k with an opinion value of -1 on
the same topic, agent i’s opinion immediately shifts to -1 in the next timestep, reflecting a discrete
transition. Conversely, in Case-3, which involves a continuous range of opinion and trust values,
changes are more gradual. Here, if agent i holds an opinion of 0.5 and is influenced by a neighbor k
with an opinion of -1 and a moderate trust factor, the opinion of agent i incrementally moves closer
to -1 in subsequent timesteps. This reflects a gradual shift towards a consensus opinion, depending
on the magnitude of the trust level between agents i and k.

To further enhance our understanding of opinion dynamics in networks with continuous trust relation-
ships, we have also used the DeGroot propagation model [4] in Case-3. The propagation of opinions
in this model is governed by the following equation:

xi(t+ 1) =
n∑

k=1

µikxk(t), t = 0, 1, (2)

Equation 2 describes the opinion of agent i at time t+ 1 as a weighted average of the opinions of
all the neighboring agents at time t, where the weights µik represent the trust agent i has in agent k.
Often, in the DeGroot model, the summation in 2 is a convex sum, i.e., the trust values add to one so
that we have

∑n
k=1 µik = 1 for each i = 1, . . . , n. This normalization allows the DeGroot model to

exhibit stable asymptotic behaviour.

At each timestep, the following processes occur: Nodes with opinion values lower than -0.95
are identified as sources of misinformation and transmit the misinformation to their immediate
neighbors (referred to as ‘candidate nodes‘) according to one of the propagation model detailed
in Equations 1 and 2. Concurrently, an intervention strategy is applied where a subset of these
neighbors—constrained by an action budget—is selected to receive credible information from a
trusted source. This source is characterized by an opinion value of 1 and we vary trust parameter
among 1, 0.8, and 0.75. The process includes a blocking mechanism where a node that exceeds a
positive opinion threshold of 0.95 is considered ‘blocked’, ceasing to interact with the misinformation
spread or disseminate positive influence further. The simulation concludes when there are no viable
‘candidate nodes’ left to propagate misinformation. Our primary objective is to devise a
learning mechanism that efficiently identifies and selects key nodes within the network to disseminate
accurate information at each time step.

3 Methods

In this section, we will explain our methodologies, presenting an overview of the network architectures
employed, including the GCN and ResNet frameworks. Additional details about the neural network
architecture utilized for our experiments can be found in Appendix A.2. We detail our proposed
ranking algorithm utilized in the SL process. Additionally, we elaborate on the implementation of
the Deep Q-Network with experience replay for RL. Furthermore, we provide an explanation of the
various reward functions designed for our RL setup.

3.1 Ranking Algorithm based Supervised Learning

In this section, we propose a ranking algorithm based SL model to classify the key nodes at each
time step to disseminate accurate information. Our SL method utilizes a GCN architecture.

Ranking Algorithm: We pose the ranking algorithm as a search problem where the objective is to
find the optimal set of nodes that when blocked minimizes the overall infection rate. The network is
represented as a graph G, where nodes can be infected, blocked, or possess opinion values within
the range [−0.95, 0.95]. Initially, a simulation network S is created by setting the opinion values of
infected nodes to −1 and removing blocked nodes. Let M denote the number of nodes in S that are

4

neither infected nor blocked. Given an action budget K, we select K nodes from M in
(
M
K

)
possible

ways, forming the set C of all possible combinations. For each subset c ∈ C, we temporarily block
the nodes in c by setting their opinion values to 1 and simulate the spread of misinformation within
S. The resulting infection rates for each subset c are stored in the set R. We identify the subset
c∗ ∈ C that yields the minimal infection rate, denoted as r∗. This subset c∗ is our target set. We then
construct a target matrix T ∈ RN×1, where N is the total number of nodes in the original network
G. All entries of T are initialized to 0, and for each node i ∈ c∗, the i-th entry of T is set to 1. This
target matrix T is subsequently used to train the GCN-based model. A pseudocode for this ranking
algorithm is presented in Algorithm 1 in Appendix A.5.

Overall Training Procedure: The training of our GCN-based model leverages the labels defined in
the target matrix T ∈ RN×1. This matrix is compared with the model’s output matrix O ∈ RN×1,
which estimates the blocking probability of each node. We evaluate training efficacy using the binary
cross-entropy loss between T and O, which quantifies prediction errors. Model weight adjustments
are implemented via standard backpropagation [20] based on this loss.

Each training iteration consists of several episodes, starting with the generation of a random graph
state G containing initially infected nodes. The GCN then processes this state to output matrix O
using the graph’s features and structure. Labels are generated, as detailed above using the ranking
algorithm, generating the target matrix T , and the binary cross-entropy loss between O and T is
calculated for backpropagation. The environment updates by blocking predicted nodes, allowing
infection spread, and adjusting node attributes. The process repeats until misinformation spread
is halted, with each episode refining the graph’s state for subsequent iterations. While the ranking
algorithm employs a brute force approach to identify optimal nodes, which becomes increasingly
complex in the case of continuous opinion models, its integration within the SL framework to generate
synthetic labels for the network represents the novel aspect of our methodology.

3.2 Reinforcement Learning-based Centralized Dynamic Planners

In SL, the process of generating labels can be costly and impractical as network size increases. This is
evident while considering mitigating misinformation propagation in large networks, where identifying
the optimal set of nodes for blocking requires a combinatorial search that is computationally infeasible.
Thus, RL emerges as a viable alternative.

We employ the Deep Q-Network (DQN) [26] framework using random exploration combined with
experience replay. Unlike the classical DQN, where the network outputs a Q function corresponding
to each possible action, we have modified our approach to develop a Deep Value Network (DVN)
as the number of available actions in each time-step in our problem setup need not be fixed. In this
modified version, the network outputs the value for a given input state. Consequently, the output
layer consists of a single neuron instead of one neuron per action. The agent’s experiences at each
time step are stored in a replay memory for the neural network parameter updates. The loss function
for training is given by

L(st, st+1|θ) =
(
rt +max

a
V̂θ−(st+1)− Vθ(st)

)
, (3)

where st represents the current state, st+1 denotes the subsequent state after action at is taken, and
rt is the reward received for taking at in st. The specific reward functions used in this study are
discussed later in the section.

Algorithm 2, in Appendix A.5, provides a detailed implementation of our DVN with experience
replay, demonstrating the use of random exploration and network synchronization.

3.2.1 Reward Functions for RL setup

The reward function is designed to encourage policies that effectively mitigate the spread of misinfor-
mation. Specifically, the reward functions modeled for our study are: (1) R0 = −(∆infection rate),
where ∆infection rate is defined as the change in infection rate resulting from taking action at. Specif-
ically, ∆infection rate = infection rate at st+1 − infection rate at st, with st+1 being the state after
action at is applied at state st. This reward structure encourages the model to reduce the rate at which
misinformation spreads by penalizing increases in the infection rate. (2) R1 = −(# candidate nodes),

5

targets the immediate neighbors of infected nodes that are susceptible to becoming infected in
the next timestep, thereby promoting strategies that minimize the potential for misinformation
to spread. (3) R2 = −(# candidate nodes) − (∆infection rate), merges these concepts, balanc-
ing the need to control both the number of susceptible nodes and the overall infection rate. (4)
R3 = 1 − (# time steps

Total time steps), rewards quicker resolutions, providing higher rewards for strategies that
contain misinformation rapidly and evaluating the effectiveness only at the end of each episode.
Furthermore, (5) R4 = −(infection rate), directly penalizes the current infection rate, thus favoring
actions that achieve lower overall infection rates. In addition to these individual rewards, our setup
also includes a combined reward that incorporates elements of both R3 and R1. Throughout the
simulation, the agent continually receives rewards based on the number of candidate nodes, fostering
strategies that limit the expansion of the infection network. As the simulation concludes, the agent
receives an episodic reward calculated as (6) R5 = −(# candidate nodes) − # time steps

Total time steps , thereby
reinforcing the importance of quick and efficient resolution of misinformation spread.

3.3 Network Architectures

In our experiments, we utilized a GCN to model node features within a network. Each node
was characterized by three key features: opinion value, connectivity degree, and proximity to a
misinformed node. These features were represented in a matrix F ∈ RN×3, where N denotes the
total number of nodes. The feature matrix is dynamic and evolves to reflect changes in the network.
It includes the opinion value, the connectivity degree, which identifies nodes potentially susceptible
to misinformation while excluding those already blocked or misinformed, and the proximity to a
misinformed node, which is calculated as the shortest path to the nearest infected node, assigning a
distance of infinity to unreachable nodes.

We have also considered using Residual Network (ResNet) Architecture. The ResNet model im-
plemented in our study is a variant of the conventional ResNet architecture. The core component
of our ResNet model is the ResidualBlock, which allows for the training of deeper networks by
addressing the vanishing gradient problem through skip connections. Each ResidualBlock consists
of two sequences of convolutional layers (Conv2d), batch normalization (BatchNorm2d), and sig-
moid activations. Complete details about the model architectures used in our study are provided in
Appendix A.2.

4 Experiments

In this section, we present the details about training data generation and configurations chosen for
our SL and RL methodologies. We also explain the test data used for evaluating the trained models.

4.1 Training Setup

In the SL setup, we experimented with three distinct graph structures: Watts-Strogatz, nearest
neighbors k = 3 and a rewiring probability p = 0.4, Erdos-Renyi, with branching factor of 4,
and Tree graphs, with branching factors randomly selected from the range [1, 4]. Each graph type
facilitated training models to evaluate the influence of various structural dynamics on performance.
We used the GCN model for the SL method. Due to consistent performance of the trained models
on the different graph topologies, we chose the small-world topology to present all the subsequent
analysis and summarize the results in Appendix A.6.1. We also trained centralized RL planners
using both ResNet and GCN network architectures. Each trained configuration is represented as
model-n-x-y, where model ∈ {ResNet, GCN}, n ∈ {10,25,50} represents the network length, x ∈
{1,2,3} represents the number of initial infected nodes and y ∈ {1,2,3} represents the action budget.

4.2 Test Data Generation

The datasets used in related works [14] are just network structures, while we did not find any real-time
opinion propagation data. To evaluate our intervention strategies, we generate two synthetic datasets
using the Watts-Strogatz model with the training dataset’s configurations. This approach allows us
to simulate complex networks and control the structure, connectivity, and initial infected nodes to
assess our models effectively.

6

Dataset v1 examines the effects of network size and the initial count of infected nodes on misinfor-
mation spread. We explored network sizes of 10, 25, and 50 nodes with 1, 2, and 3 initially infected
nodes, respectively, creating 9 unique datasets. Each configuration has 1000 random network states
with the opinion values of non-infected nodes uniformly distributed between −0.5 and 0.6.

Dataset v2 examines how the initial connections of infected nodes affect the spread of misinformation.
Like Dataset v1, it uses networks of 10, 25, and 50 nodes. However, it is varied in the initial number
of connections (degrees of connectivity) for the infected nodes from 1 to 4. Here by degree of
connectivity, we mean the number of candidate nodes present at the start of the simulation. This
variation results in a total of 12 datasets for each configuration, with each dataset containing 1000
states. In these configurations, the number of initially infected nodes is randomly chosen between 1
to 3. For instance, in a scenario with three initially infected nodes, the network might still have a
degree of connectivity as 1 if all the infected nodes are connected to the same 1 uninfected node.

5 Results and Discussion

In this section, we evaluate the models, using the infection rate metric, trained using our ranking-
based SL and RL algorithms with various reward functions. We discuss the efficiency of these models
using Dataset v2, particularly on a network of 50 nodes with a connectivity degree of 4, as it
represents the most complex test dataset we generated. Similar evaluation results for other datasets
can be found in the Appendix A.6. The details of the hardware used for our experiments are provided
in the Appendix A.4. The code and the datasets generated in our study are submitted as a zip file.
Our empirical investigation yielded insightful results regarding the performance of our trained models
under various training conditions. With a comprehensive experimental evaluations, we seek to verify
the following research questions while meeting the desired objective.

Objective and Research Questions: O1: Identify the optimal combination of initially infected nodes
and action budget parameters for training models to effectively control the spread of misinformation.
RQ1: Among the reward functions considered, which is the most effective one? RQ2: For reward
functions that focus on the time of blocking, does adding any other factor lead to better results? If
yes, which factor? RQ3: Do reward functions that look at global graph information perform better
than those considering local, neighboring information? RQ4: Does GCN offer better scalability and
performance when compared with ResNet.

O1: What is the best combination of initially infected nodes and action budget parameters for training
the models to control the misinformation spread

To examine this we focused our analysis on the Mean Squared Error (MSE) loss plots obtained
during the training phase. Figure 7 in Appendix A.6 illustrates the comparison of training loss across
various network parameter settings for all considered reward types in Case-1, employing a ResNet
model trained on a network of 50 nodes. The trend in loss convergence across episodes was found
to be consistent for both the ResNet and GCN models across all cases examined. The analysis
revealed that reward functions exhibiting lower and more stable loss values correlate with improved
model learning performance. Our findings highlight that increasing the number of initially infected
nodes typically elevates the stabilization point of MSE loss, indicating a more challenging learning
environment. Additionally, a higher action budget contributes to increased MSE variability, reflecting
the added complexity and generally poorer performance during training. Based on this analysis, we
find ResNet-n-1-1 and GCN-n-1-1, n ∈ {10,25,50}, to be the best training configurations.

RQ1: Among the reward functions considered, which is the most effective one? Answer: R4

To determine the best reward function for controlling the misinformation spread we compare the
average infection rates using different reward functions. Table 1 presents the average infection rate
values across different cases considered for Dataset v2 with a degree of connectivity 4, featuring a
network of 50 nodes, detailing the average infection rates. It compares the performance of the ResNet
model, trained on a network of 50 nodes, with the GCN model, trained on a network of 10 nodes,
using the reinforcement learning training algorithm across the different reward types, and the GCN
model trained using SL on a network of 25 nodes. Results on the additional datasets are provided in
Appendix A.6. It can be observed that reward function R4 consistently provides lower infection rate
values across different cases.

7

Table 1: Inference results on Dataset v2, with a degree of connectivity 4, featuring a network of 50
nodes. This table presents the average infection rates for different models, with ResNet trained on a
network of 50 nodes and GCN trained on networks of 10 nodes, under various methods (M.) tested
with varying action budgets (A.) across different cases considered.

A. M. Case-1 Case-2 Case-3

ResNet(50) GCN(10) ResNet(50) GCN(10) ResNet(50) GCN(10)

1

RL+R0 0.2334 0.2481 0.2496 0.2454 0.0449 0.0461
RL+R1 0.1917 0.1608 0.1965 0.1607 0.0449 0.0435
RL+R2 0.2427 0.1608 0.2148 0.1608 0.0451 0.0438
RL+R3 0.2331 0.2958 0.2281 0.3381 0.0444 0.046
RL+R4 0.199 0.1593 0.2513 0.1596 0.045 0.0442
RL+R5 - 0.1607 - 0.1605 - 0.0439

SL+GCN(25) 0.304 0.2889 0.3715

2

RL+R0 0.0974 0.1012 0.0992 0.1007 0.0398 0.04
RL+R1 0.0886 0.0842 0.0901 0.0843 0.0398 0.0398
RL+R2 0.097 0.0842 0.0957 0.0843 0.0399 0.0398
RL+R3 0.0959 0.0969 0.0962 0.1032 0.0398 0.04
RL+R4 0.0898 0.0842 0.1005 0.0842 0.0399 0.0398
RL+R5 - 0.0842 - 0.0842 - 0.0398

SL+GCN(25) 0.1464 0.1032 0.3491

3

RL+R0 0.0599 0.0599 0.0599 0.06 0.0397 0.0399
RL+R1 0.0599 0.0597 0.0598 0.0597 0.0398 0.0397
RL+R2 0.0598 0.0597 0.0599 0.0597 0.0398 0.0397
RL+R3 0.06 0.0598 0.0601 0.0602 0.0397 0.0399
RL+R4 0.0598 0.0597 0.06 0.0597 0.0398 0.0398
RL+R5 - 0.0597 - 0.0597 - 0.0398

SL+GCN(25) 0.0488 0.0559 0.2526

RQ2: For reward functions that focus on time of blocking, does adding any other factor lead to better
result? If yes, which factor? Answer: Yes. #candidate nodes.

Reward function R3, which is formulated to minimize the number of time steps required to halt the
spread of misinformation, might inadvertently not be the most effective strategy for minimizing the
overall infection rate within the network. As the reward is solely based on the speed of response,
it does not directly account for the magnitude of the misinformation spread, that is, the number of
nodes affected. Therefore, the agent may prioritize actions that conclude the propagation swiftly but
do not necessarily result in the most substantial reduction in the spread of misinformation. However,
our results indicate that under specific training configurations with an action budget or initial infected
nodes greater than 1, the reward function R3 outperforms others in maintaining lower infection rates,
as shown in Figure 8 in Appendix A.6. This finding is significant since R3, a sparser reward type,
requires less computational effort and is independent of network observability. As the action budget
increases the propagation tends to conclude in fewer timesteps thereby resulting in the RL agent
receiving a higher reward in the case of R3. Figure 2 shows that the RL agent trained with the R3

reward function chooses actions that conclude propagation in the least time. Conversely, Figure 1
illustrates the sequence of actions chosen by an RL agent trained with the R1 reward function on the
same network. Although R1 requires more time steps than R3, it results in a lower infection rate. This
can also be observed from Table 1, where the infection rate is higher for the R3 reward function than
any other reward function. In order to effectively implement this we have considered combining this
episodic reward along with R1, resulting in reward type R5. This has shown a significant performance
improvement when compared to the original version.

RQ3: Do reward functions that look at global graph information perform better than those considering
local, neighboring information ? Answer: Yes

Analysis of the inference outcomes using Dataset v2, as presented in Table 1, provides substantial
evidence supporting Hypothesis RQ4. Notably, single factor reward functions, specifically R1 =
−(# candidate nodes) and R4 = −(infection rate), consistently resulted in lower infection rates

8

Figure 2: Sequence of actions chosen by the RL agent trained using reward function R3. Infection
Rate=0.7

across various settings compared to their more complex counterparts. This trend was observed in
both ResNet and GCN models. From a practical standpoint, R1 can be particularly advantageous
because it does not require complete observability of the network, but just the immediate neighbors of
infected nodes. Conversely, R4, which involves the infection rate, demands a complete understanding
of the state of each node within the network, for every time step, to be accurately computed. This
requirement for total network observability could limit the practicality of R4 in situations where such
detailed information is unavailable or difficult to gather.

RQ4: Does GCN offer better scalability and performance when compared with ResNet? Answer: Yes

GCNs are hypothesized to outperform traditional convolution-based architectures like ResNet in tasks
involving graph data due to their ability to naturally process the structural information of networks
and their enhanced ability to represent complex feature sets. This study compares the scalability
and performance of a GCN, which excels in node classification within graphs, to a ResNet model
that, despite its success in image recognition, may not scale as effectively to larger graph structures
beyond the size it was initially trained on. Referring to Table 1, the GCN model, trained on only
10 node networks, consistently exhibits lower average infection rates across all the cases and under
varying action budgets, when compared with the ResNet model trained on 50 node networks. The
ability of GCN to maintain lower infection rates even as network complexity increases underscores its
robustness and scalability in more complex network scenarios. This performance contrast highlights
the suitability of GCN architectures for graph-based tasks, supporting the hypothesis that GCNs
offer greater scalability and better performance in managing graph data than architectures primarily
designed for grid-like data structures.

6 Conclusions

This paper introduces scalable and innovative intervention strategies for containing the spread of
misinformation within dynamic opinion networks. Our significant contributions include analysis
using continuous opinion models, a novel ranking algorithm for identifying key nodes, and the
utilization of GCNs to optimize intervention strategies. Additionally, we design and study various
reward functions for reinforcement learning, enhancing our approach to misinformation mitigation.

Despite significant progress, our work has limitations. In the field of computational social science,
often more complex agent models are being investigated. While we have made significant efforts to
extend the understanding of planning strategies, especially in continuous opinion networks, exploring
complex agent traits such as stubbornness and the representation of directed trust, and implementing
topic-dependency in a multi-topic network along with distributed planners instead of centralized
planners as in our work is a compelling future direction.

Broader Societal Impact: This work provides methods that can be used to exert control on information
spread. When used responsibly by authorized information providers, which the authors support, it
will help reduce prevalent infodemics in social media. But it may also be misused by an adversary
to wean control from an authorized party (e.g., information owner) and counter efforts to tackle
misinformation. Overall, the authors believe more research efforts are needed to control opinion
networks in pursuit of long-term societal benefits.

9

References
[1] Daron Acemoglu and Asuman Ozdaglar. Opinion dynamics and learning in social networks.

Dynamic Games and Applications, 1:3–49, 2011.

[2] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016 election. Journal
of economic perspectives, 31(2):211–236, 2017.

[3] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the spread of misinformation
in social networks. In Proceedings of the 20th international conference on World wide web,
pages 665–674, 2011.

[4] Morris H DeGroot. Reaching a consensus. Journal of the American Statistical association,
69(345):118–121, 1974.

[5] Xuejun Ding, Mengyu Li, Yong Tian, and Man Jiang. Rbotue: Rumor blocking considering
outbreak threshold and user experience. IEEE Transactions on Engineering Management, 2021.

[6] Israel Junior Borges Do Nascimento, Ana Beatriz Pizarro, Jussara M Almeida, Natasha
Azzopardi-Muscat, Marcos André Gonçalves, Maria Björklund, and David Novillo-Ortiz.
Infodemics and health misinformation: a systematic review of reviews. Bulletin of the World
Health Organization, 100(9):544, 2022.

[7] Lidan Fan, Zaixin Lu, Weili Wu, Bhavani Thuraisingham, Huan Ma, and Yuanjun Bi. Least cost
rumor blocking in social networks. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems, pages 540–549. IEEE, 2013.

[8] Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi, Elias Khalil, Shuang
Li, Le Song, and Hongyuan Zha. Fake news mitigation via point process based intervention. In
International conference on machine learning, pages 1097–1106. PMLR, 2017.

[9] Adam Fourney, Miklos Z Racz, Gireeja Ranade, Markus Mobius, and Eric Horvitz. Geographic
and temporal trends in fake news consumption during the 2016 us presidential election. In
CIKM, volume 17, pages 6–10, 2017.

[10] Chao Gao and Jiming Liu. Modeling and restraining mobile virus propagation. IEEE transac-
tions on mobile computing, 12(3):529–541, 2012.

[11] Mahak Goindani and Jennifer Neville. Social reinforcement learning to combat fake news
spread. In Uncertainty in Artificial Intelligence, pages 1006–1016. PMLR, 2020.

[12] Qiang He, Dafeng Zhang, Xingwei Wang, Lianbo Ma, Yong Zhao, Fei Gao, and Min Huang.
Graph convolutional network-based rumor blocking on social networks. IEEE Transactions on
Computational Social Systems, 2022.

[13] Yanqing Hu, Shenggong Ji, Yuliang Jin, Ling Feng, H Eugene Stanley, and Shlomo Havlin.
Local structure can identify and quantify influential global spreaders in large scale social
networks. Proceedings of the National Academy of Sciences, 115(29):7468–7472, 2018.

[14] Jiajian Jiang, Xiaoliang Chen, Zexia Huang, Xianyong Li, and Yajun Du. Deep reinforce-
ment learning-based approach for rumor influence minimization in social networks. Applied
Intelligence, 53(17):20293–20310, 2023.

[15] Zhongyuan Jiang, Xianyu Chen, Jianfeng Ma, and S Yu Philip. Rumordecay: rumor dissemina-
tion interruption for target recipients in social networks. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 52(10):6383–6395, 2022.

[16] Elias Boutros Khalil, Bistra Dilkina, and Le Song. Scalable diffusion-aware optimization of
network topology. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1226–1235, 2014.

[17] Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, and Jing Jiang. Interpretable rumor
detection in microblogs by attending to user interactions. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pages 8783–8790, 2020.

10

[18] Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Minimizing the spread of contamination
by blocking links in a network. In Aaai, volume 8, pages 1175–1180, 2008.

[19] Sumeet Kumar and Kathleen M Carley. Tree lstms with convolution units to predict stance and
rumor veracity in social media conversations. In Proceedings of the 57th annual meeting of the
association for computational linguistics, pages 5047–5058, 2019.

[20] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-
propagation. In Proceedings of the 1988 connectionist models summer school, volume 1, pages
21–28, 1988.

[21] Yaguang Lin, Zhipeng Cai, Xiaoming Wang, and Fei Hao. Incentive mechanisms for crowd-
blocking rumors in mobile social networks. IEEE Transactions on Vehicular Technology,
68(9):9220–9232, 2019.

[22] Bo Liu, Xiangguo Sun, Qing Meng, Xinyan Yang, Yang Lee, Jiuxin Cao, Junzhou Luo, and
Roy Ka-Wei Lee. Nowhere to hide: Online rumor detection based on retweeting graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[23] Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on twitter with tree-structured
recursive neural networks. Association for Computational Linguistics, 2018.

[24] Ling-ling Ma, Chuang Ma, Hai-Feng Zhang, and Bing-Hong Wang. Identifying influential
spreaders in complex networks based on gravity formula. Physica A: Statistical Mechanics and
its Applications, 451:205–212, 2016.

[25] Mohammad Ali Manouchehri, Mohammad Sadegh Helfroush, and Habibollah Danyali. Tempo-
ral rumor blocking in online social networks: A sampling-based approach. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 52(7):4578–4588, 2021.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[27] B. Muppasani, V. Narayanan, B. Srivastava, and M. N. Huhns. Expressive and flexible simulation
of information spread strategies in social networks using planning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 23820–23822, 2024.

[28] Le Nguyen and Nidhi Rastogi. Graph-based approach for studying spread of radical online
sentiment. In Companion Proceedings of the ACM Web Conference 2023, pages 1373–1380,
2023.

[29] Abu Quwsar Ohi, MF Mridha, Muhammad Mostafa Monowar, and Md Abdul Hamid. Exploring
optimal control of epidemic spread using reinforcement learning. Scientific reports, 10(1):22106,
2020.

[30] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news detection on social
media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1):22–36, 2017.

[31] Santhoshkumar Srinivasan and Dhinesh Babu LD. A social immunity based approach to
suppress rumors in online social networks. International Journal of Machine Learning and
Cybernetics, 12:1281–1296, 2021.

[32] Tetsuro Takahashi and Nobuyuki Igata. Rumor detection on twitter. In The 6th International
Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium
on Advanced Intelligence Systems, pages 452–457. IEEE, 2012.

[33] Guangmo Tong, Weili Wu, and Ding-Zhu Du. Distributed rumor blocking with multiple positive
cascades. IEEE Transactions on Computational Social Systems, 5(2):468–480, 2018.

[34] Guangmo Tong, Weili Wu, Ling Guo, Deying Li, Cong Liu, Bin Liu, and Ding-Zhu Du. An
efficient randomized algorithm for rumor blocking in online social networks. IEEE Transactions
on Network Science and Engineering, 7(2):845–854, 2017.

11

[35] Guangmo Amo Tong and Ding-Zhu Du. Beyond uniform reverse sampling: A hybrid sampling
technique for misinformation prevention. In IEEE INFOCOM 2019-IEEE conference on
computer communications, pages 1711–1719. IEEE, 2019.

[36] Hanghang Tong, B Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and Christos Faloutsos.
Gelling, and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM
international conference on Information and knowledge management, pages 245–254, 2012.

[37] Senzhang Wang, Xiaojian Zhao, Yan Chen, Zhoujun Li, Kai Zhang, and Jiali Xia. Negative
influence minimizing by blocking nodes in social networks. In Workshops at the Twenty-Seventh
AAAI Conference on Artificial Intelligence, 2013.

[38] Penghui Wei, Nan Xu, and Wenji Mao. Modeling conversation structure and temporal dynamics
for jointly predicting rumor stance and veracity. arXiv preprint arXiv:1909.08211, 2019.

[39] Qingqing Wu, Xianguan Zhao, Lihua Zhou, Yao Wang, and Yudi Yang. Minimizing the
influence of dynamic rumors based on community structure. International Journal of Crowd
Science, 3(3):303–314, 2019.

[40] Ruidong Yan, Deying Li, Weili Wu, Ding-Zhu Du, and Yongcai Wang. Minimizing influence of
rumors by blockers on social networks: algorithms and analysis. IEEE transactions on network
science and engineering, 7(3):1067–1078, 2019.

[41] Ruidong Yan, Yi Li, Weili Wu, Deying Li, and Yongcai Wang. Rumor blocking through
online link deletion on social networks. ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(2):1–26, 2019.

[42] Enyu Yu, Yan Fu, Qing Tang, Jun-Yan Zhao, and Duan-Bing Chen. A re-ranking algorithm for
identifying influential nodes in complex networks. IEEE Access, 8:211281–211290, 2020.

[43] Ahmad Zareie and Rizos Sakellariou. Rumour spread minimization in social networks: A
source-ignorant approach. Online Social Networks and Media, 29:100206, 2022.

[44] Jianguo Zheng and Li Pan. Least cost rumor community blocking optimization in social
networks. In 2018 third international conference on security of smart cities, industrial control
system and communications (SSIC), pages 1–5. IEEE, 2018.

12

A Appendix

A.1 Related Works

This section reviews existing studies on controlling the flow of misinformation in networks. While
most previous research has focused on detecting fake news through various features such as linguistic,
demographic, or community-based indicators, there has been comparatively less work on mitigating
misinformation. Mitigation strategies are typically categorized into three main approaches: removing
critical nodes, severing essential connections, and countering rumors with factual information. In
the following sections, we will first discuss the literature on misinformation detection, followed by
a review of studies aimed at mitigating the spread of misinformation. Finally, we will provide an
overview of approaches utilizing Graph Neural Networks (GNN) and Reinforcement Learning (RL)
to mitigate misinformation spread.

Misinformation Detection: Initial efforts in misinformation detection aimed at curbing rumor
spread through strategic node blocking. Wu et al. [39] developed a community detection algorithm
to segment network nodes, evaluate their influence, and block key nodes. Zheng and Pan [44]
addressed the least cost rumor community blocking (LCRCBO) using a community-centric influence
model and a greedy algorithm to select optimal nodes for containment. However, both methods have
raised concerns regarding cost-effectiveness and operational efficiency. Expanding on node-centric
approaches, Ding et al. [5] developed a dynamic rumor propagation model with algorithms to
identify and remove critical nodes and connections, introducing an ’outbreak threshold’ to evaluate
interventions. In contrast, Khalil et al. [16] and Yan et al. [41] advanced edge removal strategies
under a linear threshold (LT) model, creating heuristic algorithms to manage misinformation spread
effectively [15]. Tong and Du [35] used a hybrid sampling method, which could assign high
weights to users susceptible to misinformation, to pinpoint users most vulnerable to fake news, while
Zareie and Sakellariou [43] introduced a passive edge-blocking technique that leverages entropy
to balance network diffusion efficiency. Nguyen et al. [28] applied network analysis to explore
sentiment propagation in social networks, finding that sentiments often cluster within comment
threads, suggesting that online forums may serve as echo chambers that reinforce uniform opinions
among participants.

Misinformation Propagation Minimization: This research category promotes disseminating
truthful information as a counter-rumor measure. Lin et al. [21] suggested a crowdsourcing framework
to enable users to select from various collaborative or independent rumor control methods. Tong et
al. [33] analyzed the effectiveness of the peer-to-peer independent cascade (PIC) model in private
social networks, where independent rumor agents create ’positive cascades’, and demonstrated that
such strategies are robust under Nash equilibria. Yan et al. [40] identified the rumor minimization
challenge as monotonically decreasing and devised a two-stage process for selecting effective
blocking candidates. Manouchehri et al. [25] addressed maximizing influence blocking (IBM) with
considerations for timing and urgency, proposing an efficient, theoretically sound sampling method.
Lastly, Srinivasan and LD [31] proposed a competitive cascade model that focuses on leveraging user
opinions and the critical nature of rumors to identify and activate influential nodes promoting positive
information.

These studies highlight the complexity of misinformation propagation minimization and underscore
the need for deeper analysis. Our study builds on these works by exploring how misinformation
spreads under different environmental conditions and agent dynamics. We aim to propose more
effective mitigation strategies, contributing to a nuanced understanding of misinformation dynamics
and enhancing the resilience of information networks.

GNN Based Approaches: Graph Convolutional Networks (GCNs) are increasingly being utilized
to detect the rumors and propagation patterns within social networks. For instance, Wei et al. [38]
developed a GCN-based model to analyze user stances and conversation content for better rumor
detection. Ma et al. [23] created a tree kernel to compare similarities between subtrees in retweeting
trees. Kumar and Carley [19] employed a multitask learning framework to extract representations
from retweeting trees for rumor and stance detection. Similarly, Khoo et al. [17] explored various
influences within a retweeting tree and utilized a transformer model to enhance rumor detection by
learning the interactions among these influences. Moreover, Liu et al. [22] proposed a structure-aware

13

retweeting GNN that identifies rumor patterns based on retweeting behaviors. This method leverages
both node and structural-level data, suggesting that propagation paths offer distinct insights into the
credibility of the disseminated information. Contrastingly, while the detection of rumors has been
extensively studied, the use of GCNs for rumor minimization remains under-explored. Authors in
[12] introduce an innovative approach for blocking rumors on social networks by integrating user
opinions with confidence levels into a new model (CBOA) and employing a directed GCN (DGCN)
to identify and block critical nodes capable of mitigating rumor spread.

However, there are opportunities to enhance their study. Our research investigates the scalability
of GCNs and their performance across three different environments with varying agent dynamics.
Additionally, we propose a novel ranking algorithm for training GNNs. Furthermore, we identify sce-
narios where supervised learning faces challenges and address these limitations using reinforcement
learning techniques.

RL Goindani and Neville [11] develop a social reinforcement learning approach to mitigate the
spread of fake news through social networks. Their method involves learning an intervention model
to enhance the spread of true news, thereby reducing the influence of fake news. The authors
model the news diffusion process using a Multivariate Hawkes Process (MHP) and employ policy
optimization to learn intervention strategies. Ohi et al. [29] investigate strategies to mitigate the
spread of pandemics using a reinforcement learning approach. The model is based on the SEIR
(Susceptible-Exposed-Infectious-Recovered) compartmental model. It allows for dynamic interaction
where individuals move randomly, influencing the spread of the disease. The agent is trained to
determine optimal movement restrictions (from no restrictions to full lockdowns) to minimize disease
spread while considering economic factors.

Current research in this field largely focuses on identifying misinformation or removing nodes and
edges to limit rumor propagation. While some studies, such as those by He et al. [12], investigate
misinformation suppression methods, they often do not address complex environmental scenarios,
which our study aims to explore. Our research specifically targets the minimization of misinformation
spread after the detection of misinformed agents is done. We aim to hinder their attempts to dissemi-
nate false information by strategically blocking selective nodes with positive information. Our work
begins with the implementation of a GNN-based supervised learning model to detect misinformation.
To overcome the limitations of supervised learning, we further incorporate a reinforcement learning
paradigm. This progression enables us to develop and optimize more effective strategies within
complex network environments, ultimately enhancing the robustness of misinformation control
measures.

A.2 Model Details

A.2.1 Graph Neural Networks (GNNs)

Graph Neural Networks (GCNs) are advanced deep learning models tailored for handling data with
a graph structure. Such models are particularly adept at processing information within complex
networks by learning to synthesize node representations. These representations are derived through
the aggregation and transformation of information from neighboring nodes. Specifically, the rep-
resentation of a node vi in a graph G is iteratively updated by integrating information from its
immediate neighbors, denoted as N(vi). This process employs a propagation function f , parame-
terized by neural network weights W and an activation function σ. The updated representation of a
node in a multi-layered Graph Convolutional Network (GCN), as proposed in the literature, can be
mathematically expressed as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(4)

Here, Ã = A+ IN represents the augmented adjacency matrix of the graph G, incorporating self-
connections by adding the identity matrix IN . The diagonal matrix D̃ii =

∑
j Ãij facilitates the

normalization of Ã. The term W (l) denotes the weight matrix at layer l, and σ(·) is the activation
function. The matrix H(l) ∈ RN×D encapsulates the node features at layer l.

14

We engage with a graph comprising N nodes in the application discussed. Our GCN outputs a vector
O ∈ RN×1, representing the likelihood of each node vi ∈ V being pivotal for propagation through
the network. This mechanism enables the model to figure out significance of each node in mitigating
information spread within the graph structure.

GCN Architecture Overview Our model is structured as follows: It comprises three graph
convolutional layers followed by a linear layer. The architecture is designed to progressively transform
the input node features into a space where the final classification (e.g., determining the likelihood of
a node being pivotal in propagation minimization).

• Initial Graph Convolution: The model begins with a graph convolutional layer (GCNConv),
taking input_size features and transforming them into a hidden representation of size
hidden_size. This layer is followed by a ReLU activation function.

• Hidden Graph Convolutional Layers: After the initial layer, the architecture includes four
GCNConv layers, all utilizing hidden_size units. These layers are designed to iteratively
process and refine the features extracted from the graph’s structure. Each of these layers is
followed by a ReLU activation to introduce non-linearity.

– The model employs repeated application of the GCNConv layer with hidden_size
units, demonstrating the capacity to deepen the network’s understanding of the graph’s
topology through successive transformations.

• Output Graph Convolution: A final GCNConv layer reduces the hidden representation to
the desired num_classes, preparing the features for the prediction task.

• Linear Layer and Sigmoid Activation: The architecture concludes with a linear transforma-
tion (nn.Linear) directly mapping the output of the last GCNConv layer to num_classes.
A sigmoid activation function is applied to this output, producing probabilities for each class
in a binary classification scenario.

In this specific implementation, the input_size is set to 3, indicative of the initial feature dimen-
sionality per node. The hidden_size is configured at 128, providing a substantial feature space
for intermediate representations. Lastly, the num_classes is established at 1, signifying only one
numerical output for each nodes.

Packages Used The development of our supervised learning models, particularly those utilizing
graph convolutional networks, leveraged several Python packages instrumental in defining, training,
and evaluating our models. Below is a list of these packages and a brief description of their roles in
our implementation:

• torch: Serves as the foundational framework for constructing and training various neural
network models, including those for graph-based data.

• torch_geometric: An extension of PyTorch tailored for graph neural networks. It provides
efficient data structures for graphs and a collection of methods for graph convolutional
operations, making it essential for implementing graph convolutional neural networks
(GCNs).

• networkx: Utilized for generating and manipulating complex networks. In our project,
networkx is primarily used for creating synthetic graph data and for preprocessing tasks
that require graph analysis and manipulations before feeding the data into the neural network
models.

A.2.2 Residual Network (ResNet)

The Residual Network (ResNet) model implemented in our study is a variant of the conventional
ResNet architecture. The core component of our ResNet model is the ResidualBlock, which allows
for the training of deeper networks by addressing the vanishing gradient problem through skip
connections. Each ResidualBlock consists of two sequences of convolutional layers (Conv2d), batch
normalization (BatchNorm2d), and sigmoid activations. A distinctive feature is the adaptation of the
skip connection to include a convolutional layer and batch normalization if there is a discrepancy in
the input and output channels or the stride is not equal to one.

15

ResNet Architecture Overview

• Initial Convolution: Begins with a convolutional layer applying 64 filters of size 3x3,
followed by batch normalization and sigmoid activation.

• Residual Blocks: Three main layers (layer1, layer2, layer3) constructed with the
_make_layer method. Each layer contains a sequence of ResidualBlocks, with channel
sizes of 32, 64, and 128, respectively. The number of blocks per layer is determined by the
num_blocks parameter.

– Each ResidualBlock implements two sequences of convolutional operations, batch
normalization, and sigmoid activation, with an optional convolution in the shortcut
connection for channel or stride adjustments.

• Adaptive Input Reshaping: Inputs are dynamically reshaped to a square form based on the
square root of the second dimension, ensuring compatibility with different input sizes.

• Pooling and Output Layer: Concludes with an average pooling layer to reduce spatial
dimensions, followed by a fully connected layer mapping 128 features to a single output,
thus producing the final prediction.

Training Details Our model is trained using the PyTorch library, leveraging its comprehen-
sive suite of neural network tools and functions. The optimizer of choice is the Adam optimizer
(torch.optim.Adam), selected for its adaptive learning rate properties, which helps in converging
faster. The learning rate was set to 0.0005, balancing the trade-off between training speed and the
risk of overshooting minimal loss values. The training process involved the iterative adjustment of
weights through backpropagation, minimizing the loss calculated at the output layer. This procedure
was executed repeatedly over batches of training data, with the model parameters updated in each
iteration to reduce the prediction error.

Packages Used The implementation of our ResNet model and the training process was facilitated
by the following Python packages:

• torch: Provides the core framework for defining and training neural networks.

• torch.nn: A submodule of PyTorch that contains classes and methods specifically designed
for building neural networks.

• torch.nn.functional: Offers functional interfaces for operations used in building neural
networks, like activations and pooling functions.

• torch.optim: Contains optimizers such as Adam, which are used for updating model
parameters during training.

A.3 Metrics

Training Loss

• SL: In the Supervised Learning (SL) framework, for our study, we employed the Binary
Cross Entropy (BCE) loss to train the Graph Convolutional Network (GCN) model. Here,
we delineate the iterative process used during the training phase under this setting. The
model is fed with a new graph state at the beginning of each iteration. The GCN produces an
output vector O ∈ [0, 1]N×1, where N is the number of nodes in the graph. Each component
of O, denoted as Oi, represents the probability that node i should be blocked to minimize
the propagation rate in the network. A greedy algorithm is employed to ascertain the optimal
node to block. For each node i, temporarily set the node as blocked. We compute the
propagation rate of the network with node i blocked. Then, we revert the blockage of node i
and proceed to evaluate the next node. We select the node that, when blocked, results in the
lowest propagation rate across the network. Upon determining the node j, which yields the
minimum propagation rate when blocked, a target vector T ∈ 0, 1N×1 is constructed such
that Tj = 1 (indicating the target node to block), and Ti = 0 for all i ̸= j.
The BCE loss between the output vector O and the target vector T is computed as follows:

16

BCE Loss = − 1

N

N∑
i=1

[Ti log(Oi) + (1− Ti) log(1−Oi)]

The Binary Cross Entropy (BCE) loss is particularly useful in this context because it
measures the performance of the model in terms of how effectively it can predict the binary
outcome (block/no block) for each node in the graph. Unlike our reinforcement learning
setup, which utilizes batch updates across multiple states or episodes, the supervised learning
approach updates the model weights based on the loss calculated from a single graph state
per iteration.

• RL: The training loss for our model is computed using the Mean Squared Error (MSE)
metric. In each episode, the loss is calculated across a batch of samples drawn from the
replay buffer. Specifically, it measures the squared difference between the predicted value
function of the current state from the policy network and the Bellman target — the observed
reward plus the value of the subsequent state as estimated by the target network. Executing
this calculation over batches of experiences allows the policy network to learn from a diverse
set of state transitions, thereby refining its predictions to better approximate the true expected
rewards through temporal difference learning.

Evaluation Metric - Infection Rate The infection rate measures the proportion of the network
that is infected over time and is a crucial metric for evaluating the spread of misinformation within a
simulated environment. It is calculated as the ratio of infected nodes to the total number of nodes
within the network at a given timestep:

Infection Rate =
Number of Infected Nodes

Total Number of Nodes
This metric serves not only as a means to understand the dynamics of misinformation spread during
simulations but also as a vital testing metric for evaluating model performance on test datasets.
Models that effectively contain or reduce the infection rate are considered to have performed well, as
they demonstrate the ability to mitigate the spread of misinformation across the network.

A.4 Hardware details

We have used two servers to run our experiments. One with 48-core nodes each hosting 2 V100 32G
GPUs and 128GB of RAM. Another with 256-cores, eight A100 40GB GPUs, and 1TB of RAM.
The processor speed is 2.8 GHz.

A.5 Training Details

A.5.1 SL

Training Methodology: Our SL setup is coupled with a ranking algorithm which is shown in
Algorithm 1. We GCN with an input size of 3 (opinion value, degree of node, proximity to source
node), a hidden size of 128, and an output size of 1. The model was trained using the Adam optimizer
with a learning rate of 0.001 and a binary cross-entropy loss function. The training process involved
1000 epochs, where in each epoch, a graph with 25 nodes was generated. During each epoch, the
model iteratively minimized the infection rate by selecting nodes to block based on GCN output until
no uninfected nodes remained. The loss was calculated and backpropagated, and the weights were
updated accordingly. The total loss for each epoch was averaged over iterations.

A.5.2 RL

Training Algorithm: Shown in Algorithm 2.
In the DQN framework with experience replay, two neural networks are utilized: the target network
Q̂θ− and the policy network Qθ. The target network is periodically updated by copying weights from
the policy network, while the policy network is optimized continuously through the replay memory
D, which stores agent’s past experiences. During training, the agent samples random mini-batches of
transitions from D to minimize the loss function via gradient descent, enabling the policy network

17

Algorithm 1 Ranking Algorithm
1: Input: Graph G, infected nodes I , blocked nodes B, action budget K
2: Output: Target matrix T ∈ RN×1

3: S ← initialize_simulation_network(G, I,B)
4: M ← get_uninfected_and_unblocked_nodes(S)
5: C ← combinations(M,K)
6: min_rate← 1
7: target_set← None
8:
9: for c ∈ C do

10: temp_S ← S
11: block_nodes(temp_S, c) ▷ Temporarily block nodes in c by setting their opinion values to 1
12: rate← simulate_propagation(temp_S) ▷ Infection Rate = Number of Infected Nodes

Total Number of Nodes
13: if rate < min_rate then
14: min_rate← rate
15: target_set← c
16: end if
17: end for
18:
19: T ← [0]N×1

20: for i ∈ target_set do
21: T [i]← 1
22: end for
23:
24: return T

to estimate optimal actions. This strategy helps the agent break the temporal correlation inherent in
sequential data, enhancing the stability and convergence of the learning process. We use the Mean
Squared Error (MSE) metric to calculate the loss value between the policy network and the target
network.

Training Methodology: The Neural Network model is trained using a variant of Q-learning, with a
replay buffer approach to stabilize the learning process, aimed at learning the value function. Training
commences with a fully exploratory policy (epsilon = 1) and transitions to an exploitation-focused
strategy as epsilon decays over time. The learning rate is set to 5× 10−4, and mean squared error
(MSE) loss is utilized to measure the prediction quality.

At each episode, 200 random initial states are generated, with a selected parameter of the number of
initially infected nodes, and actions are determined through an epsilon-greedy method, balancing
between exploration and exploitation. The agent performs actions by selecting nodes in the network to
effectively contain misinformation spread. For each action, the network’s new state and corresponding
reward are observed, which are then stored in the replay buffer.

Batch updates are carried out by sampling from this buffer, ensuring that learning occurs across a
diverse set of state-action-reward-next-state tuples. We have used a batch-size of 100 across the
experiments. The policy network parameters are optimized using the Adam optimizer, and the target
network’s parameters are periodically updated to reflect the policy network, reducing the likelihood
of divergence.

The training process continues for 300 number of episodes, with the epsilon parameter decaying after
each timestep within an episode, encouraging the model to rely more on learned values rather than
random actions as training progresses. The duration of each episode and overall training, along with
average rewards and loss, are logged for post-training analysis. The model parameters yielding the
best performance on the validation set are preserved for subsequent evaluation phases.

A.6 Inference Results

A.6.1 SL

We have conducted comprehensive testing of our SL model across various topographies and environ-
ments, examining the performance under different conditions. The overall performance comparison

18

Algorithm 2 DVN with experience replay

1: Input: states per episode n, batch size m, action budget k, parameter update interval T ′, max number of
episodes emax

2: Output: V network V̂θ

3: Initialize experience replay memory D
4: Initialize policy network V with random weights θ
5: Initialize target network V̂ with weights θ−

6: Initialize ϵ-decay to 1 and anneal to 0.1 with training
7: for e = 1 to emax do
8: t← 1
9: Generate n random states st with initial infected nodes

10: Calculate candidate node set C for st
11: while any |C| > 0 do
12: Initialize blocker set Bt ← ∅
13: Randomly sample a number x from uniform distribution U(0, 1)
14: if x < ϵ then
15: Randomly sample k candidates from C as blocker set Bt

16: else
17: Initialize the infection prediction set K ← ∅
18: for all node u of candidate set C do
19: Calculate the infection number Ku using Vπ(st+1), where st+1 is the state resulting after

taking action u in state st
20: Append Ku to K
21: end for
22: Select the k nodes with the least infection prediction from K as the blocker set Bt

23: end if
24: Block the nodes in the blocker set Bt

25: Update the state st+1

26: Update the candidate set C
27: Update the reward rt
28: t← t+ 1
29: for i = 0 to n− 1 do
30: Store the transition (sit−1, B

i
t, r

i
t, s

i
t) in D

31: end for
32: Sample a random minibatch of m transitions (sj , aj , rj , sj+1) from D

33: yj ←

{
rj if episode terminates at step j + 1

rj +maxa V̂θ−(sj+1)
otherwise

34: Calculate loss using mean squared error between yj and Vθ(sj), set gradients to zero, perform
backpropagation, and update weights using the Adam optimizer

35: if t mod T ′ = 0 then
36: Update target network θ− ← θ
37: end if
38: end while
39: end for

19

for each model under these varied conditions is illustrated in Figure 3. This figure provides a com-
prehensive view of how the model performs across the different environments and topographical
scenarios.

1.
0

2.
0

3.
0

Budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
fe

ct
io

n
Ra

te

Case 1: Tree
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

Case 1: Erdos Renyi
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

Case 1: Watts Strogatz
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
fe

ct
io

n
Ra

te

Case 2: Tree
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

Case 2: Erdos Renyi
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

Case 2: Watts Strogatz
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
fe

ct
io

n
Ra

te

Case 3: Tree
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

Case 3: Erdos Renyi
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

Budget

Case 3: Watts Strogatz
Methods

gnn
random
max_degree_static
max_degree_dynamic

Figure 3: Comparative analysis of the GCN-Based SL Model Against Baseline Models Across
Different Network Types and Budgets. Each subfigure represents one of the three cases (1, 2, and
3), organized by rows, for three different types of networks: Tree, Erdős-Rényi, and Watts-Strogatz,
organized by columns. Within each panel, the infection rate is plotted for four methodologies. SL
based on GCN (blue), random node selection (orange), static selection of maximum degrees (green),
and dynamic selection of maximum degrees (red) across three levels of budget (1, 2, and 3). These
results underscore the variability in performance with changes in network structure and budget
allocation, highlighting the superior effectiveness of the GCN model in simpler cases and under
increased budget conditions, with diminishing returns in more complex environments.

Dataset v2 Testing In addition to the initial dataset, we have also tested our model using dataset v2.
For a more granular analysis, we have compiled the test results into three distinct cases:

• Case 1: Detailed in Figure 4

20

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

ct
io

n
Ra

te

Sources: 1, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 1, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 1, Budget: 3
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

ct
io

n
Ra

te

Sources: 2, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 2, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 2, Budget: 3

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
fe

ct
io

n
Ra

te

Sources: 3, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 3, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 3, Budget: 3

Figure 4: Case-1: Comparative Mean Infection Rate across different parameter settings for a GCN-
based SL model trained on a 25-node dataset and tested on dataset v2 consisting of 50 nodes

21

• Case 2: Detailed in Figure 5

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.2

0.4

0.6

0.8
In

fe
ct

io
n

Ra
te

Sources: 1, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 1, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 1, Budget: 3
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.2

0.4

0.6

0.8

In
fe

ct
io

n
Ra

te

Sources: 2, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 2, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 2, Budget: 3

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.2

0.4

0.6

0.8

In
fe

ct
io

n
Ra

te

Sources: 3, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 3, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 3, Budget: 3

Figure 5: Case-2: Comparative Mean Infection Rate across different parameter settings for a GCN-
based SL model trained on a 25-node dataset and tested on dataset v2 consisting of 50 nodes

22

• Case 3: Detailed in Figure 6

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.2

0.4

0.6

0.8
In

fe
ct

io
n

Ra
te

Sources: 1, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 1, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 1, Budget: 3
Methods

gnn
random
max_degree_static
max_degree_dynamic

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.2

0.4

0.6

0.8

In
fe

ct
io

n
Ra

te

Sources: 2, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 2, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 2, Budget: 3

1.
0

2.
0

3.
0

4.
0

Average Degree

0.0

0.2

0.4

0.6

0.8

In
fe

ct
io

n
Ra

te

Sources: 3, Budget: 1

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 3, Budget: 2

1.
0

2.
0

3.
0

4.
0

Average Degree

Sources: 3, Budget: 3

Figure 6: Case-3: Comparative Mean Infection Rate across different parameter settings for a GCN-
based SL model trained on a 25-node dataset and tested on dataset v2 consisting of 50 nodes

23

A.6.2 RL

Comparison of MSE loss across different reward functions for Case-1: Figure 7.

Figure 7: Case-1: Comparative MSE loss across different reward functions for a ResNet model
trained on a 50-node dataset. Columns represent an increase in action budget during training, while
rows indicate a rise in the number of initial infected nodes.

Comparison of Mean Infection Rate across different reward functions, showcasing that the reward R3

performs better in model configurations with higher action budget and higher initial infected nodes:
Figure 8

Figure 8: Case-1: Comparative Mean Infection Rate across different reward functions for a ResNet
model trained on a 50-node dataset tested on Dataset v2 of 50 nodes with degree of connectivity 3.

Case-1

• Type: Binary Opinion and Binary Trust.
• Opinion Dynamic Model: Discrete Switching.

24

R0 The loss plot is presented in Figure 9. Dataset v1 Inference Result: 50 Nodes - Figure 10.

Figure 9: Case-1 using R0: Training MSE loss evolution for RL policy using ResNet model across networks of
10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources (Inf.) and action budgets
(Act.). Plotted on a logarithmic scale, the loss decreases over episodes, indicating improved policy performance
and adaptation across network sizes.

Figure 10: Case-1 using R0: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

25

R1 The loss plot is presented in Figure 11. Dataset v1 Inference Result: 50 Nodes - Figure 12.

Figure 11: Case-1 using R1: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 12: Case-1 using R1: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

26

R2 The loss plot is presented in Figure 13. Dataset v1 Inference Result: 50 Nodes - Figure 14.

Figure 13: Case-1 using R2: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 14: Case-1 using R2: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

27

R3 The loss plot is presented in Figure 15. Dataset v1 Inference Result: 50 Nodes - Figure 16.

Figure 15: Case-1 using R3: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 16: Case-1 using R3: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

28

R4 The loss plot is presented in Figure 17. Dataset v1 Inference Result: 50 Nodes - Figure 18.

Figure 17: Case-1 using R4: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 18: Case-1 using R4: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

29

Dataset v2 Results

Degree of connectivity 1 50 Nodes - Figure 19

Figure 19: Case-1 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of connectivity 1, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

30

Degree of connectivity 2 50 Nodes - Figure 20

Figure 20: Case-1 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of connectivity 2, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

31

Degree of connectivity 3 50 Nodes - Figure 21

Figure 21: Case-1 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of connectivity 3, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

32

Degree of connectivity 4 50 Nodes - Figure 22

Figure 22: Case-1 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of connectivity 4, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

Case-2

• Type: Floating Point Opinion and Binary Trust.
• Opinion Dynamic Model: Linear Adjustment.

33

R0 The loss plot is presented in Figure 23. Dataset v1 Inference Result: 50 Nodes - Figure 24.

Figure 23: Case-2 using R0: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 24: Case-2 using R0: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

34

R1 The loss plot is presented in Figure 25. Dataset v1 Inference Result: 50 Nodes - Figure 26.

Figure 25: Case-2 using R1: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 26: Case-2 using R1: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

35

R2 The loss plot is presented in Figure 27. Dataset v1 Inference Result: 50 Nodes - Figure 28.

Figure 27: Case-2 using R2: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 28: Case-2 using R2: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

36

R3 The loss plot is presented in Figure 29. Dataset v1 Inference Result: 50 Nodes - Figure 30.

Figure 29: Case-2 using R3: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 30: Case-2 using R3: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

37

R4 The loss plot is presented in Figure 31. Dataset v1 Inference Result: 50 Nodes - Figure 32.

Figure 31: Case-2 using R4: Training MSE loss evolution for RL policy using ResNet model across
networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation sources
(Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over episodes,
indicating improved policy performance and adaptation across network sizes.

Figure 32: Case-2 using R4: Performance comparison of the RL policies trained using ResNet model
for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3 of
Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

38

Dataset v2 Results

Degree of connectivity 1 50 Nodes - Figure 33

Figure 33: Case-2 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 1, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

39

Degree of connectivity 2 50 Nodes - Figure 34

Figure 34: Case-2 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 2, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

40

Degree of connectivity 3 50 Nodes - Figure 35

Figure 35: Case-2 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 3, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

41

Degree of connectivity 4 50 Nodes - Figure 36

Figure 36: Case-2 inference on Dataset v2: Performance comparison of the RL policies trained using
ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 4, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

Case-3

v1

• Type: Floating Point Opinion and Floating Point Trust.
• Opinion Dynamic Model: Linear Adjustment.

42

R0 The loss plot is presented in Figure 37. Dataset v1 Inference Result: 50 Nodes - Figure 38.

Figure 37: Case-3 v1 using R0: Training MSE loss evolution for RL policy using ResNet model
across networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation
sources (Inf.) and action budgets (Act.). The loss decreases over episodes, indicating improved policy
performance and adaptation across network sizes.

Figure 38: Case-3 v1 using R0: Performance comparison of the RL policies trained using ResNet
model for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3
of Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

43

R1 The loss plot is presented in Figure 39. Dataset v1 Inference Result: 50 Nodes - Figure 40.

Figure 39: Case-3 v1 using R1: Training MSE loss evolution for RL policy using ResNet model
across networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation
sources (Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over
episodes, indicating improved policy performance and adaptation across network sizes.

Figure 40: Case-3 v1 using R1: Performance comparison of the RL policies trained using ResNet
model for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3
of Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

44

R2 The loss plot is presented in Figure 41. Dataset v1 Inference Result: 50 Nodes - Figure 42.

Figure 41: Case-3 v1 using R2: Training MSE loss evolution for RL policy using ResNet model
across networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation
sources (Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over
episodes, indicating improved policy performance and adaptation across network sizes.

Figure 42: Case-3 v1 using R2: Performance comparison of the RL policies trained using ResNet
model for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3
of Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

45

R3 The loss plot is presented in Figure 43. Dataset v1 Inference Result: 50 Nodes - Figure 44.

Figure 43: Case-3 v1 using R3: Training MSE loss evolution for RL policy using ResNet model
across networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation
sources (Inf.) and action budgets (Act.). The loss decreases over episodes, indicating improved policy
performance and adaptation across network sizes.

Figure 44: Case-3 v1 using R3: Performance comparison of the RL policies trained using ResNet
model for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3
of Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

46

R4 The loss plot is presented in Figure 45. Dataset v1 Inference Result: 50 Nodes - Figure 46.

Figure 45: Case-3 v1 using R4: Training MSE loss evolution for RL policy using ResNet model
across networks of 10 (blue), 25 (orange), and 50 (green) nodes, for varying initial misinformation
sources (Inf.) and action budgets (Act.). Plotted on a logarithmic scale, the loss decreases over
episodes, indicating improved policy performance and adaptation across network sizes.

Figure 46: Case-3 v1 using R4: Performance comparison of the RL policies trained using ResNet
model for a 50-node network. The barplot displays the mean infection rate for datasets d1, d2, and d3
of Dataset v1 type, differentiated by the number of initial misinformation sources (Inf.) and action
budgets (Act.: a1, a2, a3). Each subplot illustrates the performance of a policy trained with the
parameters indicated in its title. Lower infection rates indicate more effective policy learning and
misinformation containment.

47

Dataset v2 Results

Degree of connectivity 1 50 Nodes - Figure 47

Figure 47: Case-3-v1 inference on Dataset v2: Performance comparison of the RL policies trained
using ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 1, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

48

Degree of connectivity 2 50 Nodes - Figure 48

Figure 48: Case-3-v1 inference on Dataset v2: Performance comparison of the RL policies trained
using ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 2, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

49

Degree of connectivity 3 50 Nodes - Figure 49

Figure 49: Case-3-v1 inference on Dataset v2: Performance comparison of the RL policies trained
using ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 3, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

50

Degree of connectivity 4 50 Nodes - Figure 50

Figure 50: Case-3-v1 inference on Dataset v2: Performance comparison of the RL policies trained
using ResNet model for a 50-node network. The barplot displays the mean infection rate for different
reward functions on Dataset v2 of Degree of Connectivity 4, differentiated by the number of initial
misinformation sources (Inf.) and action budgets (Act.: a1, a2, a3). Each subplot illustrates the
performance of a policy trained with the parameters indicated in its title. Lower infection rates
indicate more effective policy learning and misinformation containment.

51

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract are properly explained and proved in the main
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A discussion on limitations is provided in the Conclusion (Section 6)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

52

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The different experiment setups along with the details of generating train-
ing and testing data are clearly provided in the main paper with additional details in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

53

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We uploaded a zip file for our code and datasets used in our study as supple-
mentary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these expressive details in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean-variance error bars for our results and these are presented
in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

54

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Hardware details are provided in the Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the ethical guidelines properly.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In conclusion (Section 6)
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

55

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes MIT license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

56

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide detailed documentation of our code and datasets as a zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

57

	Introduction
	Problem Formulation
	Environment Description
	Propagation Model

	Methods
	Ranking Algorithm based Supervised Learning
	Reinforcement Learning-based Centralized Dynamic Planners
	Reward Functions for RL setup

	Network Architectures

	Experiments
	Training Setup
	Test Data Generation

	Results and Discussion
	Conclusions
	Appendix
	Related Works
	Model Details
	Graph Neural Networks (GNNs)
	Residual Network (ResNet)

	Metrics
	Hardware details
	Training Details
	SL
	RL

	Inference Results
	SL
	RL

