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Abstract

The rapid evolution of Generative Al, yielding outputs across
text, structured data, images, and audio, has outpaced the de-
velopment of standardized evaluation tools, leading to frag-
mented and non-reproducible practices. GAICo (Generative
Al Comparator) offers a solution: a deployed, open-source
Python library that provides a unified, extensible, and repro-
ducible framework for multi-modal GenAl evaluation. Our
demonstration highlights GAICo’s utility through a practical
case study: evaluating and debugging composite Al Travel
Assistant pipelines. We show how GAICo facilitates iso-
lating performance issues, for instance, distinguishing or-
chestrator LLM planning deficiencies from specialist image
model generation flaws, by consistently comparing diverse
outputs against tailored references. This framework stream-
lines development, improves system reliability, and promotes
reproducible evaluation, making it a critical tool for building
safer and more effective Al Its rapid adoption, evidenced by
over 14,000 downloads, underscores its relevance and impact
within the AI community.

Code — github.com/ai4society/GenAlIResultsComparator

Introduction

Generative Al is transforming research and practice, produc-
ing outputs across text, images, audio, and structured data.
Yet evaluation has not kept pace. Current approaches rely
on ad hoc scripts, siloed metrics, and manual inspection, re-
sulting in comparisons that are fragmented, subjective, and
difficult to reproduce (Lopresti and Nagy 2021). The lack of
a standardized, multi-modal framework has become a criti-
cal barrier for both researchers and practitioners.

GAICo (Generative Al Comparator) establishes a unified,
extensible library for evaluating generative outputs across
modalities (Figure 1). Implemented as a deployed, open-
source Python package, GAICo integrates diverse metrics
into a consistent interface, normalizes scores for compara-
bility, and automates reporting and visualization, enabling
practitioners to build trustworthy Al systems more quickly
and reliably (Pekka et al. 2018). GAICo acts as a cru-
cial collaborative bridge by unifying evaluation method-
ologies across traditionally disparate AI disciplines such
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Figure 1: The multi-modal GAICo workflow. The frame-
work processes answers from multi-modal (text, image, au-
dio) Al models, computes pairwise similarity scores (sg;),
and constructs several outputs: raw data reports, visualiza-
tions, and pass/fail assessments against a threshold 6.

as NLP, computer vision, audio processing, and sub-
discipline-specific tasks like automated planning and
time series forecasting. The demonstration video and a col-
lection of 17 ready-to-run Python notebooks in the code
repository show sample evaluation of LLM outputs in in-
dividual modalities (text, audio, image) as well as complex
multi-modal cases.

Demonstration on Assistant Evaluation

This demonstration will illustrate GAICo’s capabilities in
not just comparing, but also diagnosing performance issues
with complex, multi-modal Al systems. We achieve this by
evaluating three composite Al pipelines designed as travel
assistants, depicted in Figure 2 (left). Each pipeline includes
an orchestrator LLM that generates a structured itinerary
(day-level descriptions, action sequences, and budgets), and
specialist models that produce images and audio summaries
from the orchestrator’s prompts. Pipeline A is treated as the
reference, while Pipeline B and Pipeline C are compared
against it. In this demonstration, we focus on the image
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Figure 2: Demonstration of GAICo on a multi-modal travel assistant case study. (Right) 3 pipelines, Pipeline A (GPT-5 +
DALL-E 3 + OpenAl TTS) as reference, Pipeline B (Llama 4 + Stable Diffusion XL + Kokoro TTS), and Pipeline C (Gemini
2.5 Pro + Imagen + Google TTS), generate plans, images, and audio, which are evaluated by GAICo. (Left) The output radar

plot shows image and audio fidelity relative to references derived from each pipeline’s prompts.

modality, while details on text and audio evaluation can be
found in the extended GAICo paper (Gupta et al. 2025).

GAICo evaluates the fidelity of specialist image mod-
els by applying three complementary metrics: SSIM (Wang
et al. 2004) capturing structural fidelity and luminance sim-
ilarity, average hashing (Dufournaud, Schmid, and Horaud
2004) encoding global layout as a perceptual fingerprint,
and histogram matching (Shen 2007), assessing alignment
of color distributions. Together, these metrics provide a bal-
anced assessment of visual quality.

The results highlight distinct strengths across pipelines.
As shown in Figure 2 (right), Pipeline C achieves higher
structural fidelity, while Pipeline B more closely matches
color distributions. Such complementary patterns illustrate
the value of GAICo’s multi-metric approach: no single mea-
sure is sufficient to capture all dimensions of quality. GAICo
also outputs standardized CSV reports, along with radar
and bar plots, making differences interpretable and repro-
ducible. By applying these metrics to a realistic travel assis-
tant scenario, GAICo demonstrates how fragmented evalua-
tion tasks can be unified into a transparent, extensible work-
flow. While this paper highlights image evaluation, GAICo
generalizes seamlessly to text, structured data, and audio,
enabling holistic analysis of composite Al systems.

Related Work

General-Purpose Toolkits: Hugging Face’s evaluate li-
brary (Wolf et al. 2019) and scikit-learn (Pedregosa et al.
2011) provide widely used metrics for NLP and ML but
are confined to specific domains. NLTK (Bird, Klein, and
Loper 2009) and SpaCy (Honnibal et al. 2020) include ba-
sic overlap-based measures but lack support for structured
or multimedia data.

Integrated Frameworks: Ragas (Es et al. 2024) and
DeepEval (Ip and Vongthongsri 2025) offer pipelines that
couple evaluation with LLM inference, often leveraging
“LLM-as-a-judge” paradigms. While these frameworks pro-
vide flexibility, they introduce challenges in terms of repro-
ducibility, cost, and dependency on external APIs.

Domain-Specific Tools: Specialized libraries exist for
individual modalities: plan validators for automated plan-
ning (Howey, Long, and Fox 2004), dtaidistance for time-
series (Berndt and Clifford 1994), scikit-image for im-
age metrics (Van der Walt et al. 2014), or librosa for au-
dio (McFee et al. 2015). These remain siloed and require
developers to manually integrate the results.

GAICo addresses the limitations of prior approaches by
offering a post-hoc, unified comparator. It decouples evalua-
tion from inference, supports diverse modalities, normalizes
results to a common scale, and provides visualization and
reporting out of the box.

Significance and Conclusion

GAICo integrates over 15 metrics into a single, extensi-
ble framework that supports evaluation across text, struc-
tured data, images, and audio, making it broadly applicable
to composite Al systems. A collection of 17 ready-to-run
Python notebooks within the repository further lowers the
barrier to adoption, providing practical entry points for di-
verse tasks. GAICo has already demonstrated strong com-
munity uptake, with over 14,000 downloads in its first three
months (PyPI Stats 2025). Its design emphasizes openness
and extensibility (to custom metrics), ensuring the frame-
work evolves alongside advances in generative Al. Standard-
ized CSV reports and visualizations make results replicable,
interpretable, and easy to share, addressing the reproducibil-
ity issue with modern GenAl evaluation. In the travel assis-
tant case study, GAICo exposed complementary strengths
of specialist image models. Such distinctions are critical for
debugging and improving Al pipelines, yet difficult to cap-
ture with isolated tools. Taken together, GAICo is both a
practical toolkit for immediate adoption and a collabo-
rative bridge across Al subfields. Its open-source avail-
ability, early adoption, and extensible design ensure that it
is a promising step towards transparent, reproducible, and
trustworthy generative Al systems.
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