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Abstract
Ontologies are known for their ability to organize rich metadata,

support the identification of novel insights via semantic queries,

and promote reuse. In this paper, we consider the problem of au-

tomated planning, where the objective is to find a sequence of

actions that will move an agent from an initial state of the world

to a desired goal state. We hypothesize that given a large number

of available planners and diverse planning domains, they carry

essential information that can be leveraged to improve many on-

tology applications. We use open data on planning domains and

planners to construct the most comprehensive planning ontology to

date, based on supported competency questions, and demonstrate

its applications in two practical use cases - planner selection and

plan explanation. We have also made the ontology and associated

resources available to the AI and data communities to promote

further research.

Resource Type: Ontology, Knowledge Graph
Licence: Creative Commons Attribution 4.0 License

PURL: https://purl.org/ai4s/ontology/planning
URL: https://github.com/BharathMuppasani/AI-Planning-

Ontology

Keywords
Ontology, Automated Planning, Planner Selection, Explanation.

ACM Reference Format:
BharathMuppasani, Nitin Gupta, Vishal Pallagani, Biplav Srivastava, Raghava

Mutharaju, Michael N. Huhns, and Vignesh Narayanan. 2024. Building a

Plan Ontology to Represent and Exploit Planning Knowledge and Its Appli-

cations. In Proceedings of International Conference on Data Science and Man-
agement of Data (CODS COMAD ’24). ACM, New York, NY, USA, 12 pages.

https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CODS COMAD ’24, December 18–21, 2024, IIT Jodhpur, India
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Automated planning, where the objective is to find a sequence of

actions that will transition an agent from the initial state of the

world to a desired goal state, is an active sub-field of Artificial Intel-

ligence (AI) [8]. The ability to generate plans and make decisions

in complex domains, such as robotics, logistics, and manufacturing,

has led to significant progress in the automation of planning (see

workshop series on applications called SPARK[21]). Currently, there

are numerous planning domains, planners, search algorithms, and

associated heuristics in the field of automated planning. Each plan-

ner, in conjunction with a search algorithm and heuristic, generates

plans with varying degrees of quality, cost, and optimality. The

empirical results available for various planning problems, ranked

by planner performance and the heuristics used as available in

the International Planning Competition (IPC), can provide valuable

information to identify various tunable parameters to improve plan-

ner performance. Traditionally, improving planner performance

involves manually curating potential combinations to identify the

optimal planner configuration. However, there has been limited

effort to model the available information in a structured knowledge

representation, such as an ontology, to facilitate efficient reasoning

and enhance planner performance.

To address the challenge of representing planning problems and

associated information in a structured manner, we propose the

most comprehensive ontology for AI planning - Planning Ontology.

An ontology formally represents concepts and their relationships

[10], which enables systematic analysis of planning domains and

planners. The proposed ontology captures the features of a domain

and the capabilities of planners, facilitating reasoning with existing

planning problems, identifying similarities, and suggesting differ-

ent planner configurations. Planning ontology can also be a useful

resource for the creation of new planners as it captures essential

information about planning domains and planners, which can be

leveraged to design more efficient planning algorithms. Further-

more, ontology can promote knowledge sharing and collaboration

within the planning community.

In the field of planning, several attempts have been made to

create ontologies to enhance the understanding of planners’ capa-

bilities. For instance, Plan-Taxonomy [2] introduced a taxonomy

that aimed to explain the functionality of planners. Additionally,

https://purl.org/ai4s/ontology/planning
https://github.com/BharathMuppasani/AI-Planning-Ontology
https://github.com/BharathMuppasani/AI-Planning-Ontology
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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authors in [9] present a comprehensive ontology called PLANET,

which represents plans in real-world domains and can be lever-

aged to construct new applications. Nonetheless, the reusability

of PLANET is limited as it is not open-sourced and also supports

a subset of capabilities of our proposed ontology (see capabilities

discussion in Section 4.1). Consequently, researchers face difficulty

in extending or replicating the ontology.

This paper outlines our methodology for constructing an ontol-

ogy to represent classical1 AI planning domains, leveraging infor-

mation obtained from the IPC and supporting practical usability

requirements like explainability. Building a planning ontology us-

ing data from IPC offers several benefits, such as comprehensive

coverage of planning domains, a rich source for various benchmark

evaluation metrics, and documentation for planners. However, the

ontology is not limited to the PDDL representation or domains in

IPC and can easily be extended to any. In our current work, we

extended our preliminary work presented at a non-archival work-

shop [18]. Our contributions are at the intersection of ontologies

and AI planning and can be summarized as follows.

• Building Planning Ontology: We develop the most com-

prehensive ontology for AI planning that can be used to

represent and organize knowledge related to planning prob-

lems. We designed the competency questions to ensure that

our ontology provides a structured way to capture the re-

lationships between different planning concepts, enabling

more efficient and effective knowledge sharing and reuse.

• Demonstrating Usecase 1: Identifying Most Promising
Planner: We demonstrate the ontology’s usage for identify-

ing themost promising planner, in terms of past performance,

for a specific planning domain using data from IPC.

• Demonstrating Usecase 2: Explanation Generation: We

demonstrate the usage of ontology to extract relevant infor-

mation to generate explanations for the plans generated by

automated planners.

In the remainder of the paper, we start with preliminaries about

automated planning and IPC. Next, we provide an overview of the

existing literature on ontologies for automated planning. Following

this, we present a detailed description of the ontology construction

process and demonstrate two use cases of the proposed ontology.

We conclude with future research directions.

2 Preliminaries
In this section, we describe the necessary background for auto-

mated planning and the significance of the International Planning

Competition.

2.1 Automated Planning
Automated planning, also known as AI planning, is the process of

finding a sequence of actions that will transform an initial state of

the world into a desired goal state [8]. It involves constructing a

plan or a sequence of actions that will achieve a specified objec-

tive while respecting any constraints or limitations that may be

present. Formally, automated planning can be defined as a tuple

(𝑆,𝐴,𝑇 , 𝐼 ,𝐺), where:

1
Explained in preliminaries Section 2.1.

• 𝑆 is the set of possible states of the world

• 𝐴 is the set of possible actions that can be taken

• 𝑇 is the transition function that describes the effects of taking

an action on the current state of the world

• 𝐼 is the initial state of the world

• 𝐺 is the desired goal state

Using this notation, the problem of automated planning can be

framed as finding a sequence of actions ≺ 𝑎1, 𝑎2, ..., 𝑎𝑘 ≻ that will

transform the initial state 𝐼 into the goal state 𝐺 , while respecting

any constraints or limitations on the actions. A problem is defined

in terms of a domain and a problem instance. The domain defines

the possible actions that can be taken and the effects of each action,

while the problem instance specifies the initial state of the world

and the desired goal state. Classical planning is the simplest form

of planning where actions have unit cost and take unit time, and

all state information are modeled using predicates [8]. Various

techniques can be used to solve the planning problem, such as

search algorithms, constraint-based reasoning, and optimization

methods. These techniques involve exploring the space of possible

plans and selecting the one that satisfies the objective and any

constraints. Figure 1 illustrates an automated planning scenario for

the blocksworld domain, where an initial state can be transformed

into a goal state by executing a sequence of actions.

Attributes modeled about a domain.

(1) Requirements:A list of requirements that the planner must

satisfy to solve the given domain, e.g., typing in blocksworld

with types.

(2) Predicates: Define world properties, e.g., (on b1 b2) in

blocksworld.

(3) Actions: Units of change with preconditions and effects, e.g.,
unstack b2 b1 in blocksworld.

(4) Preconditions:Conditions for action execution, e.g., (on b1 b2)
for

unstack b2 b1.
(5) Effects: Post-action world changes, e.g., (not (on b1 b2))

after

unstack b2 b1.
(6) Constants: Fixed values, e.g., table in blocksworld.

(7) Types: Classifications based on attributes, e.g.,

(on ?x - block ?y - block) in typed blocksworld.

Attributes modeled about a problem instance from a domain.

Figure 1: Demonstration of automated planning problem
with blocksworld domain example
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(1) Name: The name of the planning problem.

(2) Domain: The name of the planning domain that the problem

belongs to.

(3) Objects: A list of objects that are present in the planning

problem. Objects are typically defined in terms of their type

and name. In the example shown in Figure 1, objects are b1,

b2, and b3.

(4) Initial State: A description of the initial state of the world,

including the values of all relevant predicates. Figure 1 rep-

resents an example initial state.

(5) Goal State: A description of the desired goal state of the

world, including the values of all relevant predicates. Figure

1 represents an example goal state.

2.2 International Planning Competition (IPC)
The International Planning Competition (IPC) is essential for eval-

uating planning systems and promoting new methodologies. It in-

cludes multiple tracks, such as classical and probabilistic planning,

with benchmarks assessing plan quality, length, and runtime. IPC

results highlight the strengths and weaknesses of various systems.

The benchmarks from IPC are ideal for crafting a planning-related

ontology, encapsulating the domain’s breadth and planners’ chal-

lenges.

For our experiments, we used the 14 domains from IPC-2011,

including scanalyzer, elevators, transport, parking, woodworking,

floortile, barman, openstacks, nomystery, pegsol, visitall, tidybot,

parcpinter, and sokoban. This extensive set demonstrates the com-

petition’s breadth and can be further expanded in future work. We

chose IPC 2011 for its diverse and extensive set of domains, re-

flecting a wide range of real-world applications and providing a

comprehensive basis for evaluating planning systems.

3 Related Work
The use of ontology-based knowledge representation and reason-

ing has been extensively studied in various domains, including

automated planning. This section focuses on the applications of

ontology-based knowledge representation and reasoning in the

context of planning and related domains. In [24], an ontology is con-

structed for the Joint Forces Air Component Commander (JFACC)

to represent knowledge from the air campaign domain. The ontol-

ogy is modularized to facilitate data organization and maintenance,

but its applicability is domain-specific, unlike our approach. In [26],

the authors automate the knowledge discovery workflow using

ontology and AI planning, creating a Knowledge Discovery (KD)

ontology to represent the KD domain and converting its variables

to a Planning Domain Definition Language (PDDL) format to obtain

the PDDL domain. The ontology’s objects represent initial and goal

states, forming the KD task, which represents a specific problem.

The authors use the Fast-Forward (FF) planning system to generate

the required plans.

In a survey of ontology-based knowledge representation and

reasoning in the planning domain, [7] suggests that knowledge rea-

soning approaches can draw new conclusions in non-deterministic

contexts and assist with dynamic planning. In [9], a reusable ontol-

ogy, PLANET, is proposed for representing plans. PLANET includes

representations for planning problem context, goal specification,

plan, plan task, and plan task description. The PLANET ontology

can be used to retrieve data related to planning tasks and the plans

generated (2/10 competency questions supported; C4, C6 from Sec-

tion 4.1). However, PLANET does not include representations for

some entities commonly associated with planning domains, such as

resources and time. Our planning ontology draws inspiration from

PLANET and appends more metadata for planner improvement. In

[1], a domain-independent approach is presented that advances the

state of the art by augmenting the knowledge of a planning task

with pertinent goal opportunities. The authors demonstrate that

incorporating knowledge obtained from an ontology can aid in pro-

ducing better-valued plans, highlighting the potential for planner

enhancement using more tuning parameters, which are captured

in our planning ontology. The CARESSES ontology [12] is another

significant development in planning-oriented ontologies, focus-

ing on cultural competence in socially assistive robots for elderly

care. Our work incorporates aspects from this ontology, specifically

the concepts of Action and Parameter. The CARESSES ontology
can be used to retrieve information about the actions in a domain

(2/10 competency questions supported; C3, C7 from Section 4.1)

The PROV-O ontology [15] provides a framework for representing

provenance information, detailing the origins and transformations

of data. In [6], P-Plan is introduced as an extension of the PROV-

O ontology for modeling scientific processes. P-Plan effectively

represents the steps, sequences, and dependencies in experimental

workflows. However, its design primarily targets scientific inves-

tigations, limiting its direct applicability to automated planning

(3/10 competency questions supported; C4, C6, C7 from Section 4.1).

We have adapted the Plan concept from P-Plan to better suit the

iterative and conditional nature of planning activities.

In our current work, we extended our preliminary work pre-

sented at a non-archival workshop [18]. Specifically, we have en-

hanced the ontology by introducing more detailed relationships

and classifications within the domain, planner, and problem cate-

gories. The new ontology now includes refined subclasses for state,

planning problems, and parameter types, along with more explicit

connections between actions, preconditions, and effects. We have

also incorporated concepts from existing ontologies within the Plan

category (more details are provided in Section 4). Furthermore, we

have added data properties of plan cost and plan explanation to

support plan explanation generation. Additionally, we have stan-

dardized the terminology for the concepts and the properties used

in our ontology. These additions aim to improve the overall clarity

and functionality of the ontology, facilitating a better understand-

ing and analysis of the planning processes. Furthermore, we include

additional use cases of our ontology and provide experimental eval-

uations to support our findings.

Table 1: Concepts reused from various ontologies

Concept Ontology
Action http://caressesrobot.org/ontology [12]

Parameter http://caressesrobot.org/ontology [12]

Plan, Step https://www.opmw.org/p-plan.owl [6]

State http://purl.org/vocab/lifecycle/schema

http://caressesrobot.org/ontology
http://caressesrobot.org/ontology
https://www.opmw.org/p-plan.owl
http://purl.org/vocab/lifecycle/schema
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4 Planning Ontology
This section covers the construction of planning ontology to cap-

ture the essential details of automated planning. We will discuss

the considerations, challenges, benefits, and limitations of using

ontologies for automated planning, to provide a better understand-

ing of how they can improve the efficiency and effectiveness of

automated planning systems.

4.1 Competency Questions
Competency questions for an ontology are focused on the needs of

the users who will be querying the ontology. These questions are

designed to help users explore and understand the concepts and

relationships within the ontology, and to find the information they

need within the associated knowledge base. By answering these

questions, the ontology can be better scoped and tailored to meet

the needs of its users.

We, in consultation with the domain experts, designed the fol-

lowing competency questions to model an ontology to represent the

general aspects of classical Automated Planning. SPARQL queries

for each of these questions can be found at our GitHub Repository
2
.

• C1: What are the different types of planners used in auto-

mated planning?

• C2: What is the relevance of planners in a given problem

domain?

• C3: What are the available actions for a given domain?

• C4: What problems in a domain satisfy a given condition?

• C5: What are all the requirements a given domain has?

• C6: What is the cost associated with generating a plan for a

given problem?

• C7: How many parameters does a specific action have?

• C8: What planning type does a specific planner belong to?

• C9: What requirements does a given planner support?

• C10: What are the different parameter types present in a

domain?

4.2 Design
An ontology is a formal and explicit representation of concepts,

entities, and their relationships in a particular domain. In this case,

ontology is concerned with the domain of automated planning,

which refers to the process of generating a sequence of actions

to achieve a particular goal within a given set of constraints. The

ontology aims to provide a structured framework for organizing

and integrating knowledge about this domain, which can be useful

in various applications, such as designing planning algorithms,

extracting best-performing planners given a domain, or learning

domain-specific macros.

Figure 2 shows an ontology that aims to encompass the vari-

ous concepts of automated planning separated into categories of

Domain, Problem, Plan, and Planner. The ontology for automated

planning is composed of 19 distinct classes and 25 object properties.

These classes and properties are designed to represent the vari-

ous elements of the automated planning domain and its associated

problems. In the design of our ontology, all axioms are formulated

using Description Logic [14], providing a formal and expressive

framework for representing and reasoning about the concepts and

relationships within our domain.

4.2.1 Domain. The Domain category in our ontology comprises

the characteristics of the AI planning domain through several

classes. These include PlanningDomain - DomainRequirement, de-
tailing domain modeling; ParameterType, defining parameter vari-

eties in a typed domain; DomainPredicate, encompassing applica-

ble predicates; DomainConstant, representing invariant constants;

and Action, for domain operations. Action class is further linked

with ActionPrecondition, ActionEffect, and Parameter. This
structured approach aids applications like algorithm design, planner

optimization, and macro learning in domain-specific contexts.

The PlanningDomain conceptualization is articulated through

axioms to represent fundamental elements of planning scenarios.

Axiom 1 signifies that every planning domain entails certain actions.

Actions are fundamental to planning as they represent the steps or

decisions that can be taken to transform a state within the domain.

Predicates are essential for defining the states within a planning

domain. Axiom 2 ensures that each domain includes predicates to

represent these states, facilitating the definition of preconditions

and effects of actions. Axiom 3 states that every planning domain

possesses certain defined requirements. Requirements in AI Plan-

ning are necessary to define various types of domain modeling,

such as conditional effects and numeric fluents. Such specifications

are not only essential for characterizing the domain but also serve

as a criterion to assess whether a planner is compatible with and

can support these specific domain modeling features.

PlanningDomain ⊑ ∃hasAction.Action (1)

PlanningDomain ⊑ ∃hasPredicate.DomainPredicate (2)

PlanningDomain ⊑ ∃hasRequirement.DomainRequirement (3)

The Action class is characterized by its effects, a fundamental

aspect of planning. Axiom 4 addresses the transformative nature of

actions in a planning domain. Understanding the effects of actions

is essential for planning algorithms to predict and evaluate the

outcomes of different action sequences.

Action ⊑ ∃hasEffect.ActionEffect (4)

Axioms 5 and 6 capture the dynamics of how actions can add

or delete predicates in a state, emphasizing the mutable nature of

states within the planning domain. This depiction is essential for

accurately modeling the consequences and feasibility of actions in

AI Planning.

ActionEffect ⊑ ∃addsPredicate.State (5)

ActionEffect ⊑ ∃deletesPredicate.State (6)

4.2.2 Problem. The Problem category of the ontology includes

classes that represent specific problems within a given domain.

These classes are designed to capture the details of a particular

problem, such as the Objects defined in the problem, which is

an instance of different types defined in the planning domain, the

Initial State of the problem, and the Goal State which are a

subclass of the parent class State which is a state description of

the given domain.

The axioms defined for PlanningProblem conceptualized the

key aspects of a planning problem. Axiom 7 indicates that each

planning problem is defined with a specific GoalState, which is the
desired outcome or objective of the problem. Axiom 8 asserts that
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Figure 2: An illustrative overview of the planning ontology, segmented into categories that encapsulate the core concepts of
automated planning: domain, problem, plan, and planner performance. Each category is distinctly represented by colored
rectangles. Classes with thick outlines denote concepts that have been adapted or reused from existing ontologies. The
data properties hasPlanExplanation, hasActionExplanation, and hasModelReconciliationExplanation [4, 13] help in providing
explanations for user queries.

each planning problem also has a defined InitialState, which pro-
vides the starting conditions and context for the planning process.

Lastly, Axiom 9 identifies the Objects present within a planning

problem, denoting the various entities that are subject to manip-

ulation or consideration during the course of planning. Finally,

the axiom 10 underscores that every planning problem includes a

potential plan or series of actions that lead to the goal state.

PlanningProblem ⊑= 1hasGoalState.GoalState (7)

PlanningProblem ⊑= 1hasInitialState.InitialState (8)

PlanningProblem ⊑ ∃hasObject.ProblemObject (9)

PlanningProblem ⊑ ∃hasPlan.Plan (10)

4.2.3 Plan. The Plan category of the ontology includes classes

that represent the sequence of actions that must be taken to solve

a given problem. The concepts in this category are adapted from

the P-Plan ontology [6]. The Plan class captures the knowledge

about the plans that planners generate for specific problems. The

plan cost for each plan is a data property (non-negative integer) of

the Plan class. This enables planners to be compared based on the

quality of the plans they generate and the cost of those plans. The

Step class from [6] stores each step of the plan.

The axioms defined for the Plan category outline the essential

features of plans in the AI planning process. Axiom 11 mandates

that each plan must have an associated plan cost, precisely quan-

tified as a non-negative integer. This is crucial for evaluating and

comparing the efficiency of different plans. Axiom 12 establishes

that every plan is generated by some planner, connecting each plan

to its generator and allowing for an understanding of the planning

process and the assessment of various planners. Axiom 13 asserts

that every Step is part of some Plan. This establishes a clear hier-
archical relationship between steps and plans, ensuring that each

individual step can be traced back to the larger plan it contributes

to. This is important for understanding the structure and sequence

of actions within a plan. Axiom 14 states that each Step must have

an associated input variable that is a ProblemObject. This con-
nects each step to the specific elements it operates on, providing a

detailed representation of how the steps interact with the problem’s

components.

Plan ⊑= 1hasPlanCost.xsd:nonNegativeInteger (11)

Plan ⊑ ∃isGeneratedBy.Planner (12)

Step ⊑ ∃isStepOf.Plan (13)

Step ⊑ ∃hasInputVar.ProblemObject (14)

4.2.4 Planner. The Planner category of the ontology includes classes
that capture the details of the planner, planner type, and the planner

performance from previous IPCs. Specifically, Planning Domain
relevance to a Planner is classified based on the percentage of

problems they have successfully solved, which is then categorized

into three levels of relevance to the planner: low, medium, and high.
By incorporating this information into the ontology, planners can

be evaluated based on their performance in different planning do-

mains, and more informed decisions can be made. In addition, this

information can be used to guide the development of new planners

and to evaluate their performance against established benchmarks.

The axioms defined for the Planner category provide a founda-

tion for understanding and assessing the capabilities of planners
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Figure 3: Workflow diagram illustrating the integration of
the Planning Ontology with AI Planning system, which sup-
ports use cases of Most Promising Planner Selection and
generating Plan Explanations with the help of generated
Knowledge graph.

in the AI planning domain. Axiom 15 classifies planners into dif-

ferent types based on their characteristics or strategies, enabling a

nuanced understanding of various planning approaches. Axiom 16

links planners with the specific domain requirements they can solve,

highlighting their applicability in different planning scenarios.

Planner ⊑ ∃ofPlannerType.PlannerType (15)

Planner ⊑ ∃solvesRequirement.DomainRequirement (16)

4.3 Accessing Planning Ontology
We have taken various measures to ensure that our planning ontol-

ogy follows the FAIR principles [25] of being Findable, Accessible,

Interoperable, and Reusable. To assist users in exploring and utiliz-

ing our ontology, we have made it accessible through a persistent

URL
1
and our GitHub repository

2
. Our repository contains ontol-

ogy model files, mapping scripts, and utility scripts that extract

information from PDDL domains and problems into intermediary

JSON format and add the extracted data as triples using our model

ontology, creating a knowledge graph. We provide sample SPARQL

queries that address the ontology’s competency questions men-

tioned earlier. Moreover, our ontology documentation, which is

accessible through the GitHub repository, provides a comprehen-

sive overview of the ontology’s structure, concepts, and relations,

including ontology visualization. This documentation serves as a

detailed guide for users to comprehend the ontology’s applications

in the automated planning domain. We also provide the scripts and

results from the ontology evaluation, which are presented as use

cases of our ontology in later sections, in our repository, along with

accompanying documentation. Furthermore, our commitment in-

cludes a proactive approach to constantly updating and refining the

ontology. This involves periodic updates and community-driven

modifications, ensuring its continuous alignment with evolving

standards and practices in the field of automated planning.

1
PURL - https://purl.org/ai4s/ontology/planning

2
https://github.com/BharathMuppasani/AI-Planning-Ontology

5 Usecase 1: Identifying Most Promising
Planner

One of the major challenges in the field of artificial intelligence

(AI) is the automated selection of the most promising planner for a

given planning domain. This challenge arises due to the vast num-

ber of available planners and the diversity of planning domains.

The traditional way to select a planner is to experiment with vari-

ous search algorithms and heuristics and settle on an appropriate

combination as seen in IPC competitions. To address this challenge,

we now present a new approach by using our planning ontology to

represent the features of the planning domain and the capabilities

of planners.

Our Planning Ontology captures the relationship between the

Planning Domain and the Planner by indicating the relevance of a

planner to a specific domain. We made use of data acquired from In-

ternational Planning Competitions (IPCs) to furnish specific details

regarding the relevance of planners. The IPC results provide us with

relevant details on the planners that took part in the competition

and the domains that were evaluated during that particular year.

This information includes specifics on how each planner performed

against all the domains that participated.

To show the usage of extracting the most promising planners

for a given domain, we have used IPC data
3
(optimal track). A

relevance relation of either low, medium, or high was assigned to

each planner based on the percentage, low-below 35%, medium-35%
to 70%, high-70% and above, of problems they solved in a given

domain. In this experiment, we consider that the experimental

environment has four planners available: Fast Downward Stone

Soup 1
4
, LM-Cut

4
, Merge and Shrink

4
, and BJOLP

4
. We evaluate 3

problem instances of each domain (mentioned in Section 2.2) with

3
http://www.plg.inf.uc3m.es/ipc2011-deterministic/

4
https://www.fast-downward.org/IpcPlanners

Table 2: Demonstrating the effectiveness of two different
policies employed to choose a planner for problem-solving.
Comparing the average nodes expanded during the search
and the resulting plan cost for two policies.

Domain Ontology Policy Random Policy
Avg. Exp. Avg. Cost Avg. Exp Avg. Cost

scanalyzer 8,588 20 8,706 20

elevators 1,471 52 64,541 52

transport 165,263 491 132,367 491

parking* 367,910 18 488,830 17

woodworking 1,988 211 19,844 211

floortile** 283,724 54 2,101 49

barman 1,275,078 90 5,816,476 90

openstacks 132,956 4 139,857 4

nomystery 1,690 13 1,690 13

pegsol 89,246 6 101,491 6

visitall 5 4 5 4

tidybot** 1,173 17 3,371 33

parcprinter 541 441,374 417 441,374

sokoban 9,653 25 156,600 25

https://purl.org/ai4s/ontology/planning
https://github.com/BharathMuppasani/AI-Planning-Ontology
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2 policies for selecting planners to generate plans for each of these

problem instances -

(1) Random Policy: To solve each problem instance, this policy

selects a random planner from the available planners.

(2) Ontology Policy: To solve each problem instance, this pol-

icy extracts the information on the best planner for the prob-

lem domain from the ontology populated with IPC-2011

data.

Q: "Which is the best planner for blocksworld domain?"

SELECT ?planner

WHERE {

po:blocksworld po:hasHighRelevance ?planner.

}

Table 2 presents the results of our evaluation, indicating the

average number of nodes expanded, during the search, to find a

solution and plan cost for each policy in a given domain. The table

provides a comprehensive summary of the performance of different

planners in terms of their efficiency and effectiveness. An ideal

planner is expected to generate a solution with low values for both

of these metrics. The Ontology Policy, designed to select the most

promising planner for a given domain (SPARQL query shown above

and in Appendix A.1), outperformed the Random Policy in terms of

the average number of nodes expanded to find a solution. Moreover,

the Random Policy failed to solve problems in the parking (1 out

of 3), floortile (2 out of 3), and tidybot (2 out of 3) domains, which

highlights the limitations of choosing a planner randomly. But if a

domain is easily solvable by relevant planners that can tackle them,

Random Policy may still do well.

6 Usecase 2: Explanation Generation
In the field of automated planning, generating clear and compre-

hensible explanations continues to be a significant challenge. While

contemporary techniques excel at plan production, they often fall

short in offering human-understandable explanations and justifi-

cations for these plans. This deficit can hinder trust and collabora-

tion, especially in contexts demanding fluid human-AI interactions.

The inherent complexities of planning problems underscore the

imperative for explainable planning. The prevailing literature delin-

eates five primary explanation categories pertinent to automated

planning [5] - Plan Explanation [3], Verbalization [20], Model Rec-

onciliation [4, 13], Explaining Specific Actions and Contrastive

Explanations [27]. We can support these by using the causal rela-

tionships represented in the ontology, analysis of the plan from a

plan validator such as VAL [11], and a template-based text generator.

In the future, we plan to augment explanations with automatically

generated metadata about plans, e.g., plan structure [22] and other

avenues of using semantics identified by [16] to provide context

for richer explanations.

Our ontology-driven approach uses semantic web technologies

to generate diverse explanation types by encoding planning do-

main knowledge, action semantics, and plan structures within the

ontology. This enables the extraction of contextually rich expla-

nations through SPARQL queries. We support three fundamental

categories of planning explanations, as outlined in Table 3, ranging

from high-level plan summaries to detailed justifications of indi-

vidual actions. The following section expands on each category

including a user question and the corresponding SPARQL query

for our Planning Ontology. Note that the SPARQL queries provided

below omit prefix declarations. In practice, appropriate prefixes

(e.g., po:, rdf:) should be included at the beginning of each query.

Plan Explanation is a crucial component in making automated

planning systems more transparent and accessible. This category

encompasses various approaches to translate complex PDDL plans

into human-comprehensible formats, and bridges the gap between

machine efficiency and human understanding. This approach facili-

tates better human-AI collaboration, as it allows non-expert users

to quickly grasp the essence of a computed plan without the need

for technical details.

High-Level Plan Summary provides an overview of the entire

plan, explaining its validity and how it achieves the goal. It offers a

broad perspective on the plan’s structure and purpose.

Q: "Why is this plan valid for achieving the goal?"

SELECT ?explanation

WHERE {

?plan a po:plan.

?plan po:hasPlanExplanation ?explanation .

}

The query above retrieves the plan explanation associated with

a specific plan using the hasPlanExplanation data property (ref.

Figure 2). The retrieved explanation provides a high-level summary

of why the plan is valid and how it achieves the goal, offering users

a quick understanding of the plan’s overall strategy.

Natural Language Generation (NLG) for explaining plan steps

involves translating the formal representation of actions, precondi-

tions, and effects into natural language descriptions. Similar to the

work in [3], where the authors focused on verbalizing task plans

through semantic tagging of actions and predicates, our approach

aims to enhance the understandability of planning systems. While

the ontology itself remains independent of the labels, incorporating

meta-data within the labels allows for the generation of natural

language explanations. This integration supports the creation of

user-friendly, contextually rich descriptions of planning processes.

Q: "Can you describe the ‘pick-up’ action in simple terms?"

SELECT ?param ?preconditionLabel ?effectLabel

WHERE {

po:pick -up po:hasParameter ?param ;

po:hasPrecondition ?preCondition ;

po:hasEffect ?effect .

?preCondition rdf:label ?preconditionLabel .

?effect rdf:label ?effectLabel .

}

This query extracts the parameters, precondition labels, and ef-

fect labels of a specific action (in this case, ‘pick-up’). By mapping

these technical details to natural language templates, we can gen-

erate human-readable explanations that illuminate the planner’s

reasoning at each stage.

Explaining Specific Actions focuses on justifying why a partic-
ular action was chosen at a specific point in the plan, often related

to the overall goal or the current state of the world. In complex
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Table 3: The following table shows examples of answers generated from the information retrieved using the Planning Ontology
for different explanation types, corresponding to the planning problem depicted in Figure 1.

Type of Explanation Description Example Question Example Response

Plan Explanation Involves translating planner outputs (e.g.,

PDDL plans) into forms that humans can

easily understand

Can you explain the plan to achieve the goal
configuration in simple terms?

Removed block 2 from block 1, placed block 2 on the

table, picked up block 3 to stack on block 1, then

stacked block 2 on block 3 to achieve the goal

configuration.

Explaining specific actions Explains why a specific action is taken in

a plan

Why did we unstack block 2 from block 1 as the
first step?

Unstacked block 2 from block 1 to free it; placed

block 2 on the table for clear rearrangement; picked

up block 3 to position above block 1; stacked block 2

on block 3 to finalize the desired configuration.

Explaining non-selection of

specific actions

When a planner’s decision is contrasted

with an alternative suggested by a

human, an explanation should

demonstrate why the alternative action

was not chosen.

Why didn’t the planner stack block 3 on block 1
before moving block 2?

The action "stack block 3 on block 1" was not

selected because: precondition "clear block 1" was

not satisfied; action "unstack block 2 from block 1"

was necessary first to satisfy the precondition;

directly stacking block 3 on block 1 would violate the

constraint "only one block can be on another block at

a time".

planning scenarios, understanding why a particular action was

chosen can be crucial for trust and system optimization.

Q: "Why was the ’pick-up’ action chosen at step 3 of the plan?"

SELECT ?actionExplanations

WHERE {

po:pick -up po:hasActionExplanation ?

actionExplanations.

}

This query retrieves the action explanation for an action using

hasActionExplanation data property (ref. Figure 2). This approach
allows users to understand not just what the plan does, but why

each step is necessary.

Explaining Non-Selection of Specific Actions addresses why
certain actions were not chosen, which can be crucial for under-

standing the planner’s decision-making process and validating the

optimality of the plan. Furthermore, providing contrastive explana-

tions with the chosen action enhances the system’s accountability

and help users understand the trade-offs considered during the

planning process.

Q: "Why did you perform (pick-up b3) instead of unstack in step 3?"

SELECT ?action ?preconditionLabel ?effectLabel

WHERE {

?action po:hasParameter ?param .

FILTER (? action IN (po:pick -up, po:unstack))

?action po:hasPrecondition ?preCondition .

?preCondition rdf:label ?preconditionLabel .

?action po:hasEffect ?effect .

?effect rdf:label ?effectLabel .

}

ORDER BY ?action

This query allows us to extract and compare the preconditions

and effects of two different actions. By analyzing this information,

we can generate explanations that highlight why one action was

preferred over another. This might involve identifying unsatisfied

preconditions in the resulting state, comparing the effects in rela-

tion to the goal state, or explaining how the chosen action better

optimizes certain metrics (e.g., plan length, and resource usage).

In practice, basic queries can be combined with more complex

logic to retrieve appropriate ontology information. This retrieved in-

formation is then processed to generate natural language responses,

ensuring that the data is presented in a meaningful and coherent

format for the user. (as shown in Table 3). This approach improves

AI planning interpretability and advances human-AI collaboration.

7 Conclusion
In this work, we build and share a planning ontology that provides

a structured representation of concepts and relations for planning,

allowing for efficient extraction of domain, problem, and planner

properties. The ontology’s practical utility is demonstrated in iden-

tifying the best-performing planner for a given domain and show-

casing the generation of comprehensive plan explanations. In the

future, we aim to conduct a comprehensive user study to evaluate

the usefulness of the generated explanations for user satisfaction.

Standardized benchmarks from IPC domains and planners offer

an objective and consistent approach to evaluating planner per-

formance, enabling rigorous comparisons in different domains to

identify the most suitable planner. The planning ontology can aid

researchers and practitioners in automated planning, and its use

can simplify planning tasks and boost efficiency. As the field of AI

planning continues to evolve, planning ontology can play a crucial

role in advancing the state-of-the-art while leveraging the past.

Future work could explore the use of a mixed reasoning strategy

that combines the structured, top-down approach of ontologies

with the dynamic, bottom-up capabilities of Large LanguageModels

(LLMs) [17]. This approach can be particularly effective in contexts

like LLMs, which have shown promise for automated planning

[19]. Furthermore, our ontology, with its specific data properties

for storing action explanations, can be leveraged to enhance this

hybridmodel. Similar to the work in [23], where iterative prompting

strategies are employed, providing feedback of observations from

a Plan Validator [11], to help LLMs reason better, the information

retrieved from the ontology can be used to enhance prompts with

appropriate domain information and relevant context, improving

their ability to generate accurate and coherent explanations. This

blend of ontology-based clarity and LLM-driven adaptability could

offer nuanced insights into coordinating actions and explaining

them in a way that is both transparent and informative.
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A Demonstration of Usecase
A.1 Usecase 1: Identifying Most Promising

Planner
Q: "Which is the best planner for blocksworld domain?"

SELECT ?planner

WHERE {

{

po:blocksworld po:hasHighRelevance ?

highRelevancePlanner

}

UNION

{

FILTER NOT EXISTS { po:blocksworld po:

hasHighRelevance ?highRelevancePlanner }

po:blocksworld po:hasMediumRelevance ?

mediumRelevancePlanner

}

UNION

{

FILTER NOT EXISTS { po:blocksworld po:

hasHighRelevance ?highRelevancePlanner }

FILTER NOT EXISTS { po:blocksworld po:

hasMediumRelevance ?mediumRelevancePlanner

}

po:blocksworld po:hasLowRelevance ?

lowRelevancePlanner

}

}

BIND(COALESCE (? highRelevancePlanner , ?

mediumRelevancePlanner , ?lowRelevancePlanner)

AS ?planner)

LIMIT 1

B SPAQRL queries for Competency Question
For the evaluation of the competency questions, we have considered

a sample knowledge graph, shown in Figure 4, for blocksworld from

IPC-2000 domain created using planning ontology shown in Figure

2.

C1: "What are the different types of planners used in auto-
mated planning?" Identifies and lists the various types of planners
utilized in the field of automated planning.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?planner

WHERE {

?planner a plan -ontology:planner.

}

C2: "What is the relevance of a planner in a given problem
domain?" Explores the importance and applicability of different

planners within a specific problem domain.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?domain ?relevance ?planner

WHERE {

?domain a plan -ontology:domain;

rdfs:label "caldera".

?planner a plan -ontology:planner.

?domain ?relevance ?planner.

}

C3: "What are the available actions for a given domain?"
Provides a list of actions that can be performed within a specified

domain.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?domain ?action

WHERE {

?domain a plan -ontology:domain;

rdfs:label "caldera".

?domain plan -ontology:hasMove ?action.

}

C4: "What problems in a domain satisfy a given condition?"
Identifies problems within a domain that meet certain specified

conditions.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?problem

WHERE {

?domain a plan -ontology:domain;

rdfs:label "caldera".

?problem a plan -ontology:problem.

?domain plan -ontology:hasProblem ?problem.

?problem plan -ontology:hasGoalState ?condition

.

FILTER (? condition = "specified_condition")

}

C5: "What are all requirements a given domain has?" Enu-
merates all the prerequisites or conditions necessary within a par-

ticular domain.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?domain ?requirement

WHERE {

?domain a plan -ontology:domain;
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Figure 4: Knowledge graph representation for blocksworld domain from IPC-2000

rdfs:label "caldera".

?domain plan -ontology:hasRequirement ?

requirement.

}

C6: "What is the cost associated with generating a plan for
a given problem?" Determines the cost involved in creating a plan

to solve a specified problem.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?plan ?cost

WHERE {

?problem a plan -ontology:problem;

rdfs:label "problem -01".

?problem plan -ontology:hasPlan ?plan.

?plan plan -ontology:hasCost ?cost.

}

C7: "How many parameters does a specific action have?"
Counts the number of parameters required for a particular action

within a domain.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT (COUNT(? parameter) AS ?parameterCount)

WHERE {

?action a plan -ontology:action;

rdfs:label "get_domain". # action of

domain caldera

?action plan -ontology:hasParameter ?parameter.

}

C8: "What planning type a specific planner belongs to?"
Classifies a given planner into its respective planning type.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?planner ?planningType

WHERE {

?planner a plan -ontology:planner;
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rdfs:label "Delfi1".

?planner plan -ontology:ofPlannerType ?

planningType.

}

C9: "What requirements does a given planner support?" Lists
the requirements that a specific planner is capable of addressing.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?planner ?requirement

WHERE {

?planner a plan -ontology:planner;

rdfs:label "Delfi1".

?planner plan -ontology:solvesRequirement ?

requirement.

}

C10: "What are the different parameter types present in
a domain?" Identifies and lists the various types of parameters

present within a specified domain.

PREFIX plan -ontology: <https://purl.org/ai4s/

ontology/planning#>

PREFIX rdfs: <http://www.w3.org /2000/01/rdf -schema

#>

SELECT DISTINCT ?domain ?parameterType

WHERE {

?domain a plan -ontology:domain;

rdfs:label "caldera".

?domain plan -ontology:hasParameterType ?

parameterType.

}
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