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Abstract
AI models are widely used in web applications and data-driven
services that rely on continuously collected and evolving online
data. Their decisions can be affected by bias, noise, and shifts in
the underlying data. This paper presents ARC, an interactive web-
based tool for rating AI models for robustness using causality-
based methods. ARC quantifies robustness, encompassing fairness
and stability, through causal metrics that measure how predictions
vary with perturbations and protected attributes, and allows users
to explore trade-offs between robustness and accuracy. The tool
is model-agnostic and task-independent: users can upload their
own datasets or select from four supported domains including
binary classification, sentiment analysis, group recommendation,
and time-series forecasting, and evaluate multiple models under a
shared causal setup. ARC helps developers assess models trained or
deployed on web data and supports informed model selection. The
demonstration video is available at https://tinyurl.com/bd3cxhrb.
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1 Introduction
AI models increasingly shape user experiences in decision support,
recommendation, and information systems that rely on web-scale
or user-generated data. Their growing use in such settings, where
models are retrained or adapted using online data streams, has

∗ARC stands for AI Rating through Causality.
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renewed concerns about transparency and bias [1, 21, 25]. Most sys-
tems remain black boxes that learn correlations rather than causal
relations [10], limiting interpretability and trust [22, 23]. Early work
introduced rating methods for bias by analyzing how model out-
puts vary with protected attributes. This idea was demonstrated
for translation APIs, chatbots, and search engines [2, 28, 29, 31],
showing that bias can be quantified alongside performance without
access to model internals. Related studies on fairness in ranking
and recommender systems [4, 8, 24] further emphasized the need
for systematic evaluation of model behavior in web and data-driven
contexts. Yet most existing approaches rely on statistical definitions
such as parity or equalized odds [11, 35, 37], which help quantify
bias but not its underlying cause.

Causal analysis provides a way to assess how changes in in-
put or protected attributes affect model outcomes [5, 7, 30]. Our
earlier work applied this idea to rating AI models for robustness
[13, 27] across sentiment analysis [17], composite tasks [14], and
time-series forecasting [15, 16], though each was treated separately.
We define robustness as comprising three dimensions: sensitivity
to confounders that create spurious correlations between input and
output, sensitivity to changes in protected attributes, and sensitivity
to perturbations in input attributes. Building on these works, ARC
unifies causal evaluation across tasks, allowing users to explore
trade-offs between accuracy and robustness through Pareto frontiers
and to upload their own datasets for computing metrics and ratings
within the same interface.

Key benefits of ARC: (a) provides a single interface for
applying causal robustness metrics across different AI tasks;
(b) enables exploration of accuracy–robustness trade-offs
throughPareto frontiers; and (c) supports user-supplied datasets
for evaluating model outcomes using ARC’s built-in metrics.
We contribute (1) a general, extensible tool for rating AI models
through causal analysis; (2) demonstrations across four tasks: bi-
nary classification, sentiment analysis, group recommendation, and
time-series forecasting, showing its generalizability; and (3) dis-
cussion of how the resulting ratings and Pareto frontiers enable
informed model selection.

2 Problem
In this section, we introduce the generalized causal model used by
ARC and the key research questions it addresses. The formulation
provides a unified view of how robustness and accuracy can be
jointly analyzed through causal reasoning. Such a formulation is
particularly relevant for web-scale and data-driven AI systems,
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Figure 1: Generalized causal model used by ARC. The validity
of link (1) depends on the conditional distribution 𝑝 (𝑇 | 𝑍 ),
while links (2) and (3) are tested using ARC’s metrics.

Figure 2: Data-to-predictions workflow showing how open
web data sources are processed and passed through black-box
AI services to obtain unperturbed and perturbed predictions
(𝑌 and𝑌 ′), which form the input for ARC’s causal evaluation.

where models are often used as black boxes and evaluated only
through observed input-output behavior.

ARC assumes that model predictions 𝑌 depend on a treatment
variable𝑇 (representing different input conditions or perturbations)
and may be indirectly affected by protected attributes 𝑍 such as
gender or age. The observed outcome 𝑂 , for example, prediction
accuracy or residual error, varies with 𝑇 and can also depend on 𝑍 .
The causal model M (Figure 1) captures these relationships. If 𝑍
influences both𝑇 and𝑂 , it introduces a confounding effect, creating
a backdoor path that biases the estimated effect of𝑇 on𝑂 . Backdoor
adjustment methods [9, 19, 36] are used to isolate the true causal
effect, denoted by 𝑝 (𝑂 | 𝑑𝑜 (𝑇 )). In the figure, solid arrows represent
testable causal links evaluated through ARC’s metrics, while the
dotted arrow indicates a potential indirect dependence between 𝑇
and𝑍 . The framework helps answer four central research questions:
RQ1: Does 𝑍 influence𝑂 , even when 𝑍 has no effect on𝑇 ? Measures
the statistical bias exhibited by the model.
RQ2: Does 𝑍 affect the relationship between 𝑇 and 𝑂 when 𝑍 influ-
ences 𝑇 ? Measures confounding bias that arises when protected
attributes alter how treatments affect outcomes.
RQ3: Does 𝑇 affect 𝑂 when 𝑍 may also influence 𝑂? Measures the
causal effect of treatments on outcomes while controlling for pro-
tected attributes, capturing robustness under varying conditions.
RQ4: Does 𝑇 affect the accuracy of the model? Measures model
performance across treatment conditions.

3 System Demonstration
3.1 Workflow Overview
Figures 2 and 3 show the prerequisite data-to-predictions stage and
the main ARC predictions-to-ratings stage. The first stage repre-
sents how data from open web sources such as Yahoo! Finance or
Google Scholar are processed through black-box AI models to ob-
tain predictions on both unperturbed (𝑌 ) and perturbed (𝑌 ′) inputs.
These pairs form the evaluation data for ARC but are not part of its
internal workflow. Figure 3 illustrates ARC’s core operation, which
converts predictions into final ratings. Using protected attributes

Figure 3: Predictions-to-ratings workflow showing how ARC
processes predictions to compute metrics, raw scores, and
final ratings.

Tasks Data Attributes Models
Binary
Classifi-
cation

German Credit
Dataset [6].

Treatment: Credit
Amount (low,
medium, high);
Protected: Age,
Gender; Outcome:
Risk (good/bad).

Logistic
Regression,
Random

Sentiment
Analysis
(SAS)

EEC Dataset [12]
with emotion
word variations
and protected at-
tributes (Gender,
Race).

Treatment: Emo-
tion Word (positive,
negative); Pro-
tected: Gender,
Race; Outcome:
Sentiment.

TextBlob, NR-
CLex, Biased,
Random

Group
Recom-
menda-
tion

Public data from
funding agencies
(RFPs) and re-
searcher profiles
[32, 33].

Treatment: Re-
quest For Proposals
(RFPs) and re-
searcher profiles;
Protected: Gen-
der; Outcome:
Goodness Scores
(for recommended
teams).

Random
Matching
(M0), String
Matching
(M1), Seman-
tic Matching
(M2), Boosted
Bandit Learn-
ing (M3)

Time-
series
Fore-
casting
(TSFM)

Stock prices (Mar
2023 - Apr 2024)
from Yahoo! Fi-
nance.

Treatment:
Semantic, Input-
specific, and
Composite pertur-
bations; Protected:
Company, Indus-
try; Outcome:
Residual.

ARIMA, Ran-
dom, Biased,
ViT-num-
spec-large
(VNS1),
ViT-num-
spec-small
(VNS2)

Table 1: Summary of tasks that include Binary Classification,
Sentiment Analysis [17], Group Recommendation [26, 34],
and Time-series Forecasting [16], data attributes, AI models,
and references with implementation details used in the ARC
tool.

𝑍 identified by the user, ARC computes causal metrics to answer
the research questions defined in Section 2. The resulting values
are aggregated into a partial order and mapped to final ratings at a
chosen rating level 𝐿, allowing comparison across AI models under
similar causal assumptions.

ARC implements four causal metrics in addition to standard
accuracy measures. Weighted Rejection Score (WRS) measures

2
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statistical bias by testing if outcomes differ significantly across
protected groups. Propensity Score Matching - based Impact
Estimation (PIE%) quantifies confounding bias by comparing the
average treatment effect before and after adjustment using propen-
sity score matching. For continuous treatments, the same effect can
be estimated via G-computation, referred to as Deconfounding
Impact Estimation (DIE%) in the tool.Average Perturbation Ef-
fect (APE) evaluates how model outcomes vary across treatments,
capturing the direct causal effect of different input variations or
perturbations. Task-specific accuracy metrics (e.g., precision,
recall, or SMAPE) complement these causal measures, allowing
joint evaluation of performance and robustness.

3.2 Demonstration
The ARC tool was implemented in Django. Table 1 summarizes
the supported tasks, datasets, and AI models. The demonstration
uses the time-series forecasting task as a running example [16].
The interface allows users to select tasks, upload datasets, spec-
ify attributes (treatment (or input), outcome (or output), protected),
choose models and metrics, and view results. ARC outputs raw
metric scores, final ratings, and Pareto frontier comparisons, allow-
ing interactive exploration of trade-offs between robustness and
accuracy within a web-based environment.
1. Select a Task (Figure 4a): The user begins by selecting a task,
such as Binary Classification, Sentiment Analysis, Group Recom-
mendation, Time-Series Forecasting, or Custom Task. 2. Choose a
Dataset (Figure 4b): The user selects a dataset relevant to the
chosen task, either from pre-loaded options or by uploading their
own. 3. Choose Attributes (Figure 4c): The user specifies the
treatment or input, outcome or output, and protected attributes that
will be used in the causal analysis. 4. Select AI Models (Figure
4d): The user picks one or more AI models from the available op-
tions for comparison. 5. Choose Evaluation Metrics (Figure 4e):
The user selects evaluation metrics defined in Section ?? that ad-
dress the research questions in Section 2. The tool provides brief
descriptions of each metric in an interactive popup window, as
shown in Figure 4e. Complete formulations of these metrics are
detailed in [16]. 6. View Results (Figure 4f): The tool presents a
structured log of user selections, computed causal results, and an
accompanying causal diagram. ARC outputs both detailed scores,
the robustness vs. performance trade-offs, and overall ratings for
comparison across AI models within the same interface.

The interface shown in Figure 4 will be available for live interac-
tion, allowing conference attendees to select tasks, upload sample
datasets, and view resulting causal metrics and Pareto analyses in
real time. The hosted version of the ARC tool will be shared at the
conference venue.

4 Discussion
In this paper, we applied ARC to four diverse tasks, showing that its
causal rating methodology generalizes across domains and can also
be applied to user-provided datasets. ARC revealed the following
key insights: 1. On the German Credit dataset, known to be
biased with respect to gender and age [3, 18], ARC identified
both statistical and confounding biases, with logistic regres-
sion emerging as the most balanced model on the Pareto

(a) Task Selection (b) Dataset Selection

(c) Attributes Selection (d) Models Selection

(e) Metric Selection (f) Displayed Results

Figure 4: Step-by-step workflow of the ARC tool, illustrating
task setup, dataset upload, attribute and model selection,
metric choice, and results visualization.

frontier; 2. For sentiment analysis systems, it quantified
gender- and race-related biases, with TextBlob and NRCLex
the least biased; 3. In group recommendation task, ARC ex-
posed gender bias, with M2 being the most biased; 4. Among
time-series forecasting models, ARC revealed that ViT-based
models (VNS1 and VNS2) achieved lower confounding bias
and smaller prediction errors, positioning them closer to
the Pareto-optimal region compared to baselines. ARC allows
users not only to reproduce these evaluations but also to upload
their own datasets and analyze models under the same causal setup.
This capability broadens its relevance to real-world applications
where training data and evaluation contexts vary continuously,
such as financial forecasting, search, or recommendation systems.
The integrated Pareto analysis provides a multi-metric view of per-
formance and robustness, identifying models that balance fairness,
stability, and predictive quality rather than optimizing for a single
metric. These capabilities make ARC a practical environment for
comparative and explainable evaluation of AI models that operate
on web-scale or user-generated data.
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Conclusion. ARC is an extensible tool that rates AImodels through
a causal lens for trust and performance assessment. It combines
causal reasoning with interactive evaluation to quantify robustness,
encompassing fairness and stability, across both benchmark and
user-supplied data. By integrating Pareto frontier, ARC helps users
interpret model behavior along multiple dimensions and identify
systems that achieve optimal trade-offs between robustness and
accuracy. Although ARC assumes a predefined causal model, this
design supports systematic investigation of well-scoped questions
without requiring exhaustive causal discovery. In practice, such
models can be refined using expert knowledge, controlled experi-
ments, or causal structure learning [20]. Future work will focus on
extending ARC’s causal model library, scaling its Pareto analysis
for larger model families, and conducting user studies to evaluate
how practitioners interpret ARC’s causal ratings [16].
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