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Abstract

As multi-agent systems become more autonomous, particu-
larly in complex coordination tasks like Multi-Agent Path
Finding (MAPF), the need for transparent and interpretable
decision-making becomes critical. Although execution traces
from MAPF algorithms provide rich diagnostic insight, exist-
ing explainability methods like visual segmentation of trace
snapshots and logic-based “why” queries address individual
modalities but remain fragmented. We introduce the Multi-
Agent Planning Ontology (maPO), a unified semantic schema
that turns raw MAPF traces into a single knowledge graph,
formalizing segmentation snapshots, conflict alerts, and re-
planning strategies. Our log-to-graph pipeline ingests planner
outputs as ontology instances, and SPARQL queries produce
contrastive and logical explanations. A user study (N=25)
confirms the effectiveness of our approach, showing that our
generated explanations are preferred over raw data 94% of
the time (p < .001) and are rated as significantly clearer. Our
contributions are: (1) the MA Planning Ontology schema,
(2) a log-to-graph transformation pipeline for SPARQL-based
explanation generation, and (3) an empirical validation of the
explanation generation framework.

1 Introduction
Coordinating multiple autonomous agents to reach individ-
ual goals without collisions is a foundational challenge in
robotics and AI. Multi-Agent Path Finding (MAPF) for-
malizes this problem on a shared graph and is known to
be NP-hard in its general form (Sharon et al. 2013; Ren
et al. 2025). Modern planners such as Conflict-Based Search
(CBS) and its improved variants (Sharon et al. 2015; Bo-
yarski et al. 2015), as well as reinforcement-learning ap-
proaches like PRIMAL (Sartoretti et al. 2019; Damani et al.
2021), achieve high performance but offer little transparency
into their decision processes.

Recent research on MAPF explainability has explored
several complementary directions. A visual segmentation
approach (Almagor and Lahijanian 2020) decomposes a
joint plan into a minimal sequence of non-conflicting snap-
shots for easy human verification. Algorithmic integration of
explainability appears in (Kottinger, Almagor, and Lahija-
nian 2022), which extends CBS to favor solutions admitting
short segmentation-based explanations. A user-driven tax-
onomy (Brandao et al. 2022) identifies the explanation types

stakeholders need (e.g. infeasibility, suboptimality, agent de-
lays). Logic-based frameworks such as (Bogatarkan 2021)
use Answer Set Programming to answer “why” and “why
not” queries directly from the planning model. Despite these
advances, there is no unified framework that both formalizes
MAPF concepts and supports diverse explanation modalities
at scale.

In this paper, we present the Multi-Agent Planning Ontol-
ogy (maPO), an extension of the standard Planning Ontol-
ogy that captures MAPF-specific constructs, including agent
properties, collision events, conflict alerts, and replanning
strategies, and the causal relations among them. By trans-
forming execution traces into a semantic knowledge graph,
our ontology enables on-demand SPARQL queries with-
out modifying the underlying path-planning algorithms. We
demonstrate that our approach imposes negligible overhead,
aligns with user needs identified in prior taxonomies (Bran-
dao et al. 2022), and generalizes across MAPF variants. Our
contributions in this paper are: (1) the maPO schema, (2)
a SPARQL-based explanation generation framework utiliz-
ing maPO schema, and (3) a user study demonstrating the
effectiveness of our framework. The remainder of the pa-
per is organized as follows. Section 2 surveys the MAPF al-
gorithms, explanation generation methods, and existing on-
tologies for autonomous systems; Section 3 introduces the
(maPO) schema; Section 4 details our SPARQL-based ex-
planation framework; Section 5 reports the user study re-
sults; and Section 6 concludes and outlines future work.

2 Background & Literature Review
MAPF Problem Formulation
Multi-Agent Path Finding is defined on an undirected graph
G = (V,E), where V represents grid cells (vertices) and
E represents connections between adjacent cells (edges)
(Wang et al. 2025). A team of n agents, A = {a1, . . . , an},
each with a unique start vertex si ∈ V and goal vertex
gi ∈ V , must navigate this environment (Wang et al. 2023b).
Time is discretized into steps t = 0, 1, 2, . . ., and at each
step, an agent may either move along an edge or wait at its
current vertex (Wang et al. 2023b). An agent’s path πi is a
sequence of vertices (vi0, v
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1, . . . , v

i
Ti
), where vi0 = si and

viTi
= gi (Wang et al. 2023b). A solution Π = {π1, . . . , πn}

is collision-free if, for all distinct agents i ̸= j and all time



steps t: Vertex-collision free: vit ̸= vjt (no two agents oc-
cupy the same vertex at the same time) (Wang et al. 2023b).
Edge-collision free: (vit, v

i
t+1) ̸= (vjt+1, v

j
t ) (agents do not

traverse the same edge in opposite directions simultane-
ously) (Wang et al. 2023b). Common efficiency objectives
include minimizing the makespan (the time when the last
agent reaches its goal), minimizing the sum of individual ar-
rival times (sum-of-costs), or minimizing the total number
of collisions encountered (Wang et al. 2023b). An impor-
tant modeling choice is how agents behave after reaching
their goals: in the “stay at target” setting, agents remain at
their goal vertices (possibly blocking others), whereas in the
“disappear at target” setting, agents are removed from the
environment upon arrival (Sharon et al. 2015; Stern et al.
2019).

An Overview of MAPF Algorithms
A wide spectrum of algorithms has been developed to solve
the MAPF problem, each embodying different trade-offs
between solution optimality, computational scalability, and
information requirements. Generically, the MAPF pipeline
can be conceptualized in four stages: S1 (initial agent plan-
ning), S2 (collision detection), S3 (collision resolution), and
S4 (agent replanning).

Centralized algorithms, such as Conflict-Based Search
(CBS) (Sharon et al. 2015) and its variants like Improved
CBS (ICBS) (Boyarski et al. 2015), operate with a global
view of the environment. They systematically identify and
resolve conflicts between agent paths, often guaranteeing
optimal solutions with respect to cost or makespan. How-
ever, this guarantee comes at a high computational cost that
grows with the number of agents and conflicts, and it re-
quires that all agent information be available to a single plan-
ner. In contrast, decentralized and distributed approaches
prioritize scalability by limiting the information available
to each agent. These methods range from reinforcement
learning policies, where agents learn to coordinate implicitly
based on local observations (e.g., PRIMAL (Sartoretti et al.
2019; Damani et al. 2021)), to fully decentralized techniques
that rely only on on-board sensing and learned rules with no
communication at all (e.g., SCRIMP (Wang et al. 2023a)).
While these methods scale to much larger teams, they often
sacrifice optimality and may not guarantee completeness.

Hybrid frameworks aim to achieve the best of both
worlds by combining fast, decentralized planning with a
lightweight centralized coordinator for resolving complex
conflicts. For instance, approaches like LNS2+RL (Li et al.
2022; Wang et al. 2025) use learned policies for local agent
movement and a large-neighborhood search to repair global
conflicts as they arise. This demand-driven coordination re-
duces communication overhead while maintaining high suc-
cess rates.

Despite this algorithmic diversity, from systematic global
search to learned local policies, our explanation framework
remains universally applicable. By focusing on the output of
the planning process rather than its internal mechanics, our
ontology can provide consistent, structured explanations for
any planner capable of producing a standardized execution
trace, discussed in Section 4.

Ontologies for Autonomous Systems and Planning
The use of ontologies to formalize knowledge in robotics
and autonomous systems is a well-established practice
aimed at promoting interoperability, reusability, and formal
reasoning. Foundational efforts like the Planning Ontology
(PO) (Muppasani et al. 2024) provide a vocabulary for de-
scribing sequential plans and processes for the field of au-
tomated planning. In robotics, the IEEE standard Core On-
tology for Robotics and Automation (CORA) offers a rich
model for physical robots, their capabilities, and environ-
ments (Schlenoff et al. 2012). For modeling perception and
interaction, the W3C standard SOSA/SSN ontology pro-
vides a vocabulary to describe sensors, observations, and
the platforms that host them, which is critical for ground-
ing agent perception in a formal structure (Janowicz et al.
2019).

Temporal and historical context is equally important. The
W3C Time Ontology provides a standard for representing
time instants and intervals (Pan and Hobbs 2006), while
the PROV Ontology (PROV-O) offers a powerful, domain-
agnostic framework for modeling provenance that is, the his-
tory and derivation of data and artifacts (Lebo et al. 2013).
PROV-O is particularly relevant for explainability, as it can
formally capture how a plan is revised or derived from an-
other, creating a traceable, auditable record of the planning
process. Our work builds upon these principles, reusing con-
cepts from these established standards to ensure our ontol-
ogy is both robust and interoperable.

Explainability in MAPF
As MAPF systems move into safety-critical and regulatory
contexts, users and stakeholders demand not only correct but
also understandable plans. Early work (Almagor and Lahi-
janian 2020) introduced a plan-segmentation explanation
paradigm, in which a complex multi-agent execution trace
is decomposed into a minimal sequence of collision-free
snapshots that a human can quickly verify for safety. Build-
ing on this idea, (Kottinger, Almagor, and Lahijanian 2022)
extended Conflict-Based Search to prefer solutions that ad-
mit short segmentation-based explanations, effectively em-
bedding explainability constraints into the planner at min-
imal additional cost. Complementing these algorithmic ad-
vances, (Brandao et al. 2022) conducted an expert user study
to derive a detailed taxonomy of explanation needs, such
as plan infeasibility, suboptimality justifications, and agent
wait-time clarifications, and recommended corresponding
modalities (visual, textual, contrastive) for effective presen-
tation. In parallel, (Bogatarkan 2021) demonstrated that a
logic-based framework using Answer Set Programming can
answer rich “why” and “why not” queries about MAPF so-
lutions by reasoning over the same constraints that generate
the plan.

Ontology-based representations offer a unified struc-
ture for all explanation modalities. By encoding agent
states, path segments, conflict alerts, and replanning strate-
gies, explanation requests, whether visual (“show me the
collision-free segments”), contrastive (“why this path in-
stead of that one?”) or logical (“why was the plan not in-
feasible?”), can all be expressed as SPARQL queries over



the same knowledge graph. This approach eliminates the
need for separate pipelines for visual segmentation and log-
ical reasoning, leverages mature semantic-web tools for ex-
tension and maintenance, and ensures that new explanation
forms (e.g., counterfactuals or temporal summaries) can be
added simply by defining new ontology classes or query
templates. To realize this, we introduce the maPO, which
formalizes the conflict-resolution lifecycle in OWL and
demonstrates how a single, coherent framework can gener-
ate rich, on-demand explanations across diverse MAPF sce-
narios.

3 Multi-Agent Planning Ontology
Building upon the foundational concepts of the Planning
Ontology (Muppasani et al. 2024) described previously, we
introduce the maPO, presented in Figure 1. This exten-
sion is specifically designed to address the unique com-
plexities of multi-agent scenarios and to establish a for-
mal, queryable knowledge base that supports on-demand ex-
plainability. To ensure interoperability and community ac-
ceptance, our maPO reuses concepts from established W3C
and IEEE standards where appropriate. While the core cat-
egories of the base ontology are preserved, they are en-
hanced to model agent-centric information, inter-agent con-
flicts, and the procedural rationale behind conflict resolution.
This structure transforms opaque execution trace data into a
queryable knowledge graph, enabling the systematic gener-
ation of answers to complex explanatory competency ques-
tions.

Reuse of Standard Ontologies
To ground our ontology in established semantic standards,
we reuse concepts from several widely adopted resources.
This practice enhances interoperability and aligns our work
with community best practices. Table 1 summarizes the key
reused ontologies and their roles within our framework.

Table 1: Summary of Reused Ontologies

Standard Reused Concept Purpose in Framework

SOSA sosa:Platform Models agent as a sensor platform
CORA cora:Capability Defines agent capabilities
OWL-Time time:Instant Represents event times
PROV-O prov:wasDerivedFrom Links original to revised plans
RDF rdf:Seq Structures agent path sequences

Competency Questions
To ensure our ontology effectively supports explainability,
we defined a set of competency questions (CQs) that guide
its design and scope. These questions represent concrete ex-
planatory needs that an analyst or end-user would have when
trying to understand a multi-agent plan. The ontology must
contain the necessary classes and properties to answer each
of these questions via SPARQL queries. The following CQs
were developed to address the specific challenges of multi-
agent plan explanation:

• C1: Which CollisionEvents (including their time,
type, location, and involved agents) were detected during
planning?

• C2: For a given CollisionEvent, which agent(s) re-
ceived a ConflictAlert?

• C3: What was an agent’s original, conflict-unaware plan,
and how does it compare to its final, resolved plan?

• C4: Why did a specific agent have to wait or reroute in
its final plan?

• C5: For a given ConflictAlert, which
ReplanningStrategy did the agent use?

• C6: What was the cost change associated with a revised
AgentSubPlan?

• C7: Why was a particular agent (from a set of conflicting
agents) chosen to be the one to replan? (i.e., what was the
planner’s selectionRationale?)

• C8: What is the final JointPlan after all conflicts are
resolved, and what is its overall makespan?

Agent and State Representation
The fundamental unit in a multi-agent system is the
agent whose behavior we seek to explain. To model
this, we introduce the ma:Agent class as a subclass of
plan:ProblemObject. To formally ground the agent
as an entity capable of perception and action, it is also de-
fined as a subclass of sosa:Platform from the SOSA
ontology (Janowicz et al. 2019). Each agent is defined by
its identifier, capabilities, and its initial and goal locations.
While simple capabilities can be captured as literals, the
ma:hasCapability property also formally links to a
cora:Capability class from the CORA ontology for
more structured definitions (Schlenoff et al. 2012).

To represent the state of an agent at a specific moment,
the ma:AgentState class is created as a subclass to
plan:State. It captures an agent’s location at a point
in time using the ma:agentAt and ma:occursAtTime
properties. To align with semantic web standards, all tem-
poral entities, such as the value of ma:occursAtTime,
are modeled as instances of time:Instant from the
W3C Time Ontology (Pan and Hobbs 2006). This al-
lows for queries about an agent’s status at critical mo-
ments, such as the time of a conflict. A key axiom en-
sures that every agent-specific plan is unambiguously as-
sociated with exactly one agent, which is crucial for ac-
countability and explanation: ma:AgentSubPlan ⊑=
1ma:belongsToAgent.ma:Agent.

Multi-Agent Plan Representation
In the multi-agent context, a global plan is a composition
of individual plans that must be coordinated. Our ontology
models this hierarchy with two primary classes derived from
plan:Plan:
• ma:AgentSubPlan: Represents a single agent’s plan,

which has a ma:hasPlanCost. It is further special-
ized into ma:OriginalSubPlan (the initial, conflict-
unaware plan) and ma:ResolvedSubPlan (a revised
plan generated after conflict resolution). This distinction



(a) Planning and conflict-resolution workflow: From the initial plan:PlanningProblem and ma:MultiAgentPlanner,
through ma:PlannerProcedure, to the generation of an initial plan:Plan, conflict detection (ma:ConflictConstraint,
ma:CollisionEvent), alerting (ma:ConflictAlert), replanning (ma:ReplanningStrategy), and assembly of
ma:JointPlan and ma:AgentSubPlan instances.

(b) Agent and state modeling: How ma:Agent, ma:AgentState, and ma:GridLocation capture agent identity, capabilities, and
spatial trajectory via ma:AgentPathSegment; the incorporation of conflict constraints (ma:ConflictConstraint), temporal context
(time:Instant, time:Interval), and provenance (prov:Activity) to enable rich, causal explanations.

Figure 1: Complete Multi-Agent Planning Ontology (maPO), split into two panels: (a) Planning and conflict-resolution
workflow, illustrating the end-to-end pipeline from problem definition and procedural plan generation through conflict de-
tection, alerting, strategy selection, and derivation of joint and agent-specific subplans; and (b) Agent and state modeling,
detailing how agents, their capabilities, and grid-based path segments are represented alongside conflict constraints, temporal
instants/intervals, and provenance activities to support on-demand explainability. Dashed arrows denote rdfs:subClassOf
hierarchies, dark-gray boxes are object properties, and tables list datatype properties (with XSD ranges).



is necessary for explaining why a plan changed and is
formally captured using the W3C PROV Ontology, as de-
scribed in the next section.

• ma:JointPlan: Represents the final, conflict-
free, and globally consistent solution for all agents.
It is defined by its constituent subplans via the
ma:composedOfSubPlans property and its overall
efficiency by ma:hasGlobalMakespan.

The fine-grained trajectory of each agent is captured by
the ma:AgentPathSegment class. This class details an
agent’s location, represented not as a simple string but as
an ordered sequence (rdf:Seq) of structured grid co-
ordinates (Beckett and McBride 2004). This segment ex-
ists over a specific time interval, which is formally repre-
sented as a time:Interval from the W3C Time Ontol-
ogy (Pan and Hobbs 2006), defined by a beginning and an
end instant. This provides the ground truth for an agent’s
movement, allowing for the analysis of specific actions like
waiting, which occurs when consecutive segments share
the same location. The relationship between a plan and its
detailed steps is formalized as ma:AgentSubPlan ⊑
∃ma:planData.ma:AgentPathSegment.

Conflict and Resolution Modeling
The core of our ontology’s explanatory power lies in its abil-
ity to model the conflict resolution lifecycle. This is achieved
through a chain of classes that represent the causal link from
problem detection to solution implementation. By reusing
the W3C PROV Ontology (Lebo et al. 2013), we make
the planner’s reasoning process transparent, traceable, and
founded on a global standard for provenance.
Detection: A ma:CollisionEvent represents a con-
flict detected by the planner. It captures the essential
”what, where, when, and who” of a conflict through
properties detailing its time (ma:occursAtTime),
location (ma:conflictLocation), type
(ma:conflictTypeEvent), and the set of agents
involved (ma:involvesAgentsEvent).
Alerting: In response, the planner issues a
ma:ConflictAlert. This class links the ab-
stract problem to a concrete action, specifying
which agent is targeted (ma:targetAgent) for
which specific conflict (ma:ConflictAlert ⊑
∃ma:alertsConflict.ma:CollisionEvent). It
also contains the planner’s justification for this choice in the
ma:selectionRationale property, which is essential
for answering competency question C7.
Strategy Selection and Provenance: The alerted agent
employs a ma:ReplanningStrategy. This action
is modeled as a prov:Activity, linking it to the
alert that prompted it. The strategy generates a new
ma:ResolvedSubPlan. This new plan is causally linked
back to its origin using two critical PROV-O properties:
prov:wasGeneratedBy, which points to the replan-
ning prov:Activity, and prov:wasDerivedFrom,
which points back to the ma:OriginalSubPlan that it
replaces.

1 {
2 "environment": {
3 "gridSize": [R, C],
4 "obstacles": [ { "id": obs_id, "

cell": [r, c] }, ]
5 },
6 "agents": [
7 { "id": agent_id,
8 "initialState": { "time": t0, "

cell": [rs, cs] },
9 "goalState": { "cell": [rg,

cg] }
10 },
11 ],
12 "agentPaths": [
13 { "agent": agent_id,
14 "planCost": cost,
15 "steps": [ { "time": t, "cell":

[r, c] }, ]
16 },
17 ],
18 "collisionEvents": [
19 { "id": coll_id, "time": t, "type

": type,
20 "location": [r, c], "agents": [

ai, aj]
21 },
22 ],
23 "jointPlan": {
24 "subplans": [ plan_id1, ],
25 "globalMakespan": T_final
26 }
27 }

Listing 1: Minimal overview of the unified MAPF JSON log
schema.

4 Explanation Framework and Functionality
To render MAPF planners transparent and trustworthy, we
ground all explanations in the maPO, utilizing SPARQL as
the query language. Any planner that produces the structured
JSON trace, as shown in Listing 1, can be ingested without
code changes. A lightweight Python script asserts the cor-
responding RDF triples, and a generic SPARQL endpoint
permits runtime querying over this unified graph. The re-
sults from these SPARQL queries are then systematically
populated into a set of predefined natural language (NL)
templates to generate the final human-readable explanations
(examples are presented in the Appendix section 4).

Conflict-Centric Analysis (C1, C2) To diagnose con-
flicts, the query in Listing 21 enumerates every collision
event involving a target agent. The query retrieves the
event’s timestamp, type, and involved agents, while also
aggregating all the coordinate locations associated with

1Prefix anonymized; PURL and public resources will be pro-
vided upon acceptance.



Table 2: User Study Results (N=25). The preference for Format B was statistically significant in all tasks (Binomial Test,
p < .001).

Scenario Task Question Preference for Clarity of
Generated Exp. (%) Generated Exp. (Mean ± SD)

1: RL (2 Agents) What is Agent 1’s final plan? 92.0 4.48± 0.82
How was the conflict resolved? 88.0 4.52± 0.77

2: CBS (3 Agents) What is the global plan summary? 84.0 4.12± 1.20
How and why did Agent 1’s plan change? 95.8 4.29± 1.06

3: ICBS (7 Agents) Why did Agent 5 take an inefficient path? 92.0 4.56± 0.70
Why did Agent 3 have a long wait? 100 4.64± 0.64

1 PREFIX ma: <http://example.org/ma#>
2 PREFIX time: <http://www.w3.org/2006/

time#>
3 SELECT ?conflict ?timestamp ?type
4 (GROUP_CONCAT(DISTINCT ?

otherAgentName; separator=",
") as ?involvedAgents)

5 (GROUP_CONCAT(CONCAT("(", STR(?y)
, ",", STR(?x), ")");
separator=";") as ?locations)

6 WHERE {
7 ?conflict a ma:CollisionEvent ;
8 ma:involvesAgentsEvent ma:

agent-1, ?otherAgent ;
9 ma:occursAtTime/time:

inXSDDateTimeStamp ?
timestamp ;

10 ma:conflictTypeEvent ?type ;
11 ma:conflictLocation ?locNode

.
12 ?locNode ma:xCoordinate ?x ; ma:

yCoordinate ?y .
13 FILTER(?otherAgent != ma:agent-1)
14 BIND(STRAFTER(STR(?otherAgent), "

#") AS ?otherAgentName) }
15 GROUP BY ?conflict ?timestamp ?type
16 ORDER BY ?timestamp

Listing 2: Query for All Conflicts Involving a Specific Agent
(C1, C2).

the conflict. By extracting time, type, location, and co-
participants, this query facilitates causal investigations.

Causal and Contrastive Explanations (C3, C4) Con-
trastive and delay-focused queries reveal both what changed
and why. The query shown in the Appendix (Listing 6) di-
rectly compares an agent’s trajectory before and after replan-
ning. To explain why an agent was delayed (C4), the query
in Listing 3 identifies wait states in the final plan and con-
nects them back to the specific conflict they were designed to
resolve, revealing the other agent involved and the location
of the conflict.

Global & Agent-Specific Performance (C6, C8) As-
sessing overall efficiency and individual contributions is
achieved with simple queries that retrieve summative prop-
erties from the final plan. These SPARQL queries, detailed
in the Appendix (Listings 4 and 5), provide insights into
makespan and sum-of-costs.

Tracing the Full Resolution History (C7) For a holis-
tic view, we can reconstruct each replanning event by trac-
ing the provenance of an agent’s sub-plans. The query, de-
tailed in the Appendix (Listing reflst:history), starts with
the OriginalSubPlan and recursively joins all subse-
quent ResolvedSubPlan instances. For each resolved
plan, it follows the prov:wasGeneratedBy property
to find the replanning activity and rationale, extracting the
complete sequence of events and revealing the planner’s rea-
soning (ma:selectionRationale) at each step.

Extensibility and Future Applications Our framework’s
true asset is the ontology, which turns raw planner logs into
a flexible, queryable knowledge base, rather than any par-
ticular SPARQL example. By decoupling explanation gen-
eration from a planner’s internal logic, we create a single,
reusable foundation for analysis and future research. This
base can support a wide range of extensions: visual plan-
segmentation via temporal and spatial queries (Almagor
and Lahijanian 2020), automated safety-rule enforcement,
conflict-driven performance diagnostics, or advanced “what-
if” analyses. We believe the ontology serves as a key build-
ing block for future work in trustworthy and explainable
multi-agent systems.

5 User Study
To evaluate the effectiveness and clarity of the explanations
generated by our ontology-driven framework, we conducted
a user study comparing our system’s output against raw
planner logs.

User Study Design
To demonstrate the planner-agnostic nature of our frame-
work, we conducted a within-subjects user study. The study
presented participants with three distinct MAPF scenarios,
each generated by a different class of MAPF algorithm,
showcasing the breadth of our approach.



1 PREFIX ma: <http://example.org/ma#>
2 PREFIX time: <http://www.w3.org/2006/

time#>
3 SELECT ?startTS ?endTS ?

otherAgentName ?conflictTS ?x ?y
4 WHERE {
5 ?resolvedPlan a ma:

ResolvedSubPlan; ma:
belongsToAgent ma:agent-1 .

6 FILTER EXISTS { ma:FinalJointPlan
ma:composedOfSubPlans ?

resolvedPlan . }
7 ?resolvedPlan ma:planData ?seg1,

?seg2 .
8 ?seg1 ma:hasPathSequence/rdf:rest

*/rdf:first ?locNode .
9 ?seg1 ma:hasValidTime/time:

hasBeginning/time:
inXSDDateTimeStamp ?startTS .

10 ?seg2 ma:hasPathSequence/rdf:rest
*/rdf:first ?locNode .

11 ?seg2 ma:hasValidTime/time:
hasBeginning/time:
inXSDDateTimeStamp ?endTS .

12 ?resolvedPlan ma:resolvesConflict
?conflict .

13 ?conflict ma:involvesAgentsEvent
?otherAgent ;

14 ma:occursAtTime/time:
inXSDDateTimeStamp
?conflictTS ;

15 ma:conflictLocation ?
locNode .

16 ?locNode ma:xCoordinate ?x ; ma:
yCoordinate ?y .

17 FILTER(?otherAgent != ma:agent-1)
18 BIND(STRAFTER(STR(?otherAgent), "

#") AS ?otherAgentName) }

Listing 3: Explain Why an Agent Waited at a Location (C4).

Scenario 1 (RL-based): A two-agent scenario planned
by a reinforcement learning agent, representing mod-
ern, learning-based decentralized approaches. Scenario 2
(CBS): A three-agent scenario solved by a classic CBS al-
gorithm, a complete and optimal centralized search method.
Scenario 3 (ICBS): A complex, seven-agent scenario in a
congested environment, solved by ICBS to represent state-
of-the-art heuristic search planners.

For each task within these scenarios, participants were
presented with two explanation formats: Format A (Raw
Data), which showed relevant excerpts from a typical plan-
ner log (e.g., lists of coordinates, multiple plan versions),
and Format B (Generated Explanation), which showed
the natural-language output from our system. Participants
were then asked to (1) choose which format was clearer for
answering the task’s question and (2) rate the clarity of For-
mat B on a 5-point Likert scale (1 = Very Unclear, 5 = Very
Clear). The study was completed by 25 participants.

User Study Results
The results, summarized in Table 2, show a clear and sta-
tistically significant preference for the generated explana-
tions across all scenarios and question types. Across all six
tasks, participants chose the generated explanation (Format
B) as the clearer format in 140 out of 149 total responses
(94.0%). This preference for Format B was statistically sig-
nificant for every task (Binomial Test, p < .001). A binomial
test (Wagner-Menghin 2005) validates that this preference is
statistically significant and not the result of a random choice.
Furthermore, the clarity of the generated explanations was
consistently rated very high, with a combined mean score
of 4.44 (SD = 0.88) out of 5 across all tasks. One-sample
Wilcoxon signed-rank (Woolson 2007) tests confirmed that
the median clarity ratings for all six tasks were higher than
the neutral midpoint of 3 (all p < .001). This non-parametric
test is ideal for Likert scale data, and our results confirm that
the high clarity ratings represent a significant positive senti-
ment, rather than a neutral or random one.

6 Discussion & Conclusion
In this paper, we introduce the maPO, a formal knowl-
edge framework designed to make complex MAPF plan-
ners transparent and auditable. Our primary contribution is
a unified, planner-agnostic approach that transforms low-
level execution logs into a rich, queryable knowledge graph.
Building upon this foundation, we developed an explanation
framework that uses SPARQL queries to translate the struc-
tured data into natural-language summaries. The effective-
ness of the explanations produced by this framework was
validated through a comprehensive user study, which pro-
vided strong statistical evidence that our approach makes
raw planner data significantly more understandable. Partic-
ipants found the generated explanations clearer than raw
data, particularly for tasks that would otherwise impose a
high cognitive load, such as calculating global plan metrics
or parsing multiple plan revisions.

By modeling the explicit causal chain from conflict de-
tection to resolution using established standards like the
PROV Ontology, our framework delivers concise, causal
explanations for complex agent behaviors, such as wait-
ing or taking detours. This capability confirms that our ap-
proach not only works but also scales effectively with envi-
ronment complexity, making planner decisions transparent.
We acknowledge that while our template-based explanations
proved effective, future work could incorporate more ad-
vanced Natural Language Generation (NLG) techniques for
richer, more dynamic narratives. Moreover, the extensibility
of our framework opens avenues in real-world robotics: by
defining agents as sosa:Platform instances, we prepare
the ontology to connect with physical robots. The next logi-
cal step is to incorporate live data from robot sensors, which
would allow the system to explain why an agent reacts to
unexpected events, such as a sudden obstacle, or debug com-
munication latencies in coordinated tasks. This creates a full
explanation system, from the initial plan to real-time actions,
that is essential for building trust and safely deploying au-
tonomous agents in the real world.
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Appendix
SPARQL Query Listings
This appendix contains supplemental SPARQL queries ref-
erenced in Section 4.

1 PREFIX ma: <http://example.org/ma#>
2 SELECT ?makespan WHERE {
3 ma:FinalJointPlan ma:

hasGlobalMakespan ?makespan.
}

Listing 4: Query for Global Makespan (C8).

1 PREFIX ma: <http://example.org/ma#>
2 SELECT (STRAFTER(STR(?agent), "#") AS

?agentName) ?cost WHERE {
3 ma:FinalJointPlan ma:

composedOfSubPlans ?plan.
4 ?plan ma:belongsToAgent ?agent ;
5 ma:hasPlanCost ?cost. }

Listing 5: Query for Per-Agent Final Cost (C6).

Statistical Methods
This appendix details the formulas used to calculate the sta-
tistical values presented in the user study results.

Preference Percentage This is the percentage of partici-
pants who preferred the generated explanation (Format B)
for a given task.

Preference % =
Number of votes for Format B

Total number of votes
× 100 (1)

Mean and Standard Deviation The mean (x̄) and sample
standard deviation (s) were calculated for the Likert scale
clarity ratings for each task.

Mean (x̄) =
1

n

n∑
i=1

xi (2)

Standard Deviation (s) =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (3)

Where xi is an individual clarity rating and n is the number
of participants who rated that task.

Binomial Test The binomial test was used to determine
if the preference for one format was statistically significant.
The null hypothesis is that the probability of choosing either
format is equal (p = 0.5). The probability of observing k

successes (e.g., choices for Format B) in n trials is given by
the probability mass function:

P (X = k) =

(
n

k

)
pk(1− p)n−k (4)

The reported p-value is the probability of observing a result
at least as extreme as the one measured.

One-Sample Wilcoxon Signed-Rank Test This non-
parametric test was used to determine if the median of the
clarity ratings was significantly different from the neutral
midpoint of the Likert scale (µ0 = 3). The test involves
ranking the absolute differences between each rating (xi)
and the hypothesized median (µ0), and then summing the
ranks based on the sign of the difference. The resulting test
statistic, W , is compared to a critical value to determine the
p-value. This test is suitable for ordinal data and does not
assume a normal distribution.



1 PREFIX ma: <http://example.org/ma#>
2 PREFIX time: <http://www.w3.org/2006/

time#>
3 SELECT ?phase ?timestamp ?x ?y
4 WHERE {
5 BIND(ma:agent-1 AS ?agent)
6 {
7 ?orig a ma:OriginalSubPlan ;
8 ma:belongsToAgent ?

agent .
9 ?orig ma:planData/ma:

hasValidTime/time:
hasBeginning/time:
inXSDDateTimeStamp ?
timestamp ;

10 ma:planData/ma:
hasPathSequence/rdf
:rest*/rdf:first ?
cellNode .

11 ?cellNode ma:xCoordinate ?x ;
ma:yCoordinate ?y .

12 BIND("Original" AS ?phase)
13 } UNION {
14 ?res a ma:ResolvedSubPlan ;
15 ma:belongsToAgent ?

agent .
16 FILTER EXISTS { ma:

FinalJointPlan ma:
composedOfSubPlans ?res .
}

17 ?res ma:planData/ma:
hasValidTime/time:
hasBeginning/time:
inXSDDateTimeStamp ?
timestamp ;

18 ma:planData/ma:
hasPathSequence/rdf
:rest*/rdf:first ?
cellNode .

19 ?cellNode ma:xCoordinate ?x ;
ma:yCoordinate ?y .

20 BIND("Resolved" AS ?phase)
21 }
22 } ORDER BY ?phase ?timestamp

Listing 6: Original vs. Resolved Plan Comparison (C3).

1 PREFIX ma: <http://example.org/ma#>
2 PREFIX time: <http://www.w3.org/2006/

time#>
3 PREFIX prov: <http://www.w.org/ns/

prov#>
4 SELECT ?planType ?planCost ?timestamp

?x ?y ?rationale
5 (GROUP_CONCAT(DISTINCT ?

otherAgentName; separator=",
") AS ?otherAgents)

6 WHERE {
7 BIND(ma:agent-1 AS ?agent)
8 {
9 ?plan a ma:OriginalSubPlan ;

10 ma:belongsToAgent ?
agent ;

11 ma:hasPlanCost ?
planCost .

12 BIND("Original Plan" as ?
planType)

13 BIND("N/A" as ?timestamp)
BIND("N/A" as ?x) BIND("N
/A" as ?y)

14 BIND("Initial plan generation
" as ?rationale)

15 } UNION {
16 ?plan a ma:ResolvedSubPlan ;
17 ma:belongsToAgent ?

agent ;
18 ma:hasPlanCost ?

planCost ;
19 ma:resolvesConflict ?

conflict ;
20 ma:generatedBy ?

activity .
21 ?activity prov:used/ma:

triggeredBy/ma:
selectionRationale ?
rationale .

22 ?conflict ma:occursAtTime/
time:inXSDDateTimeStamp ?
timestamp ;

23 ma:conflictLocation
?locNode ;

24 ma:
involvesAgentsEvent
?otherAgent .

25 ?locNode ma:xCoordinate ?x ;
ma:yCoordinate ?y .

26 FILTER(?otherAgent != ?agent)
27 BIND("Resolved Plan" as ?

planType)
28 BIND(STRAFTER(STR(?otherAgent

), "#") as ?
otherAgentName)

29 }
30 }
31 GROUP BY ?plan ?planType ?planCost ?

timestamp ?x ?y ?rationale
32 ORDER BY ?timestamp

Listing 7: Reconstruct an Agent’s Full Replanning History
(C7).



Natural Language Explanation Templates
Agent’s Final Plan

The final plan for [Agent Name] has a cost of [Cost].
Summary: The agent starts at [Start], then [Sum-
mary of movements...].
Full Path: [Path string]

Agent’s Conflicts

[Agent Name] was involved in these conflicts (high-
lighted on grid):

Time Type Location With
... ... ... ...

Conflict Resolution and Plan Change

A conflict occurred at location [Locations]. To re-
solve the conflict with [Other Agent Name], [Re-
planning Agent Name] changed its plan. This
changed the plan cost from [Original Cost] to [New
Cost].
Rationale: Using a [Alert Type] strategy, [Ratio-
nale].

Agent Wait Explanation

[Agent Name] had to wait for a total of [Total Wait]
second(s) in its final plan. This was necessary to
avoid a planned conflict with [Other Agent Name]
that would have occurred at ([X],[Y]) at T=[Conflict
Time].

Global Plan Summary

Here is a summary of the final joint plan:
The overall makespan is [Makespan].
The sum of individual plan costs is [Sum of Costs].
To achieve this solution, a total of [Replan Count]
replans were required.


