
Scalable Multi-Agent Path Finding using Collision-Aware Dynamic Alert Mask
and a Hybrid Execution Strategy

Anonymous submission

Abstract

Multi-agent pathfinding (MAPF) remains a critical problem
in robotics and autonomous systems, where agents must nav-
igate shared spaces efficiently while avoiding conflicts. Tra-
ditional centralized algorithms that have global information,
such as Conflict-Based Search (CBS), provide high-quality
solutions but become computationally expensive in large-
scale scenarios due to the combinatorial explosion of conflicts
that need resolution. Conversely, distributed approaches that
have local information, particularly learning-based methods,
offer better scalability by operating with relaxed information
availability, yet often at the cost of solution quality. To ad-
dress these limitations, we propose a hybrid framework that
combines decentralized path planning with a lightweight cen-
tralized coordinator. Our framework leverages reinforcement
learning (RL) for decentralized planning, enabling agents to
adapt their planning based on minimal, targeted alerts–such
as static conflict-cell flags or brief conflict tracks–that are dy-
namically shared information from the central coordinator for
effective conflict resolution. We empirically study the effect
of the information available to an agent on its planning per-
formance. Our approach reduces the inter-agent information
sharing compared to fully centralized and distributed meth-
ods, while still consistently finding feasible, collision-free
solutions–even in large-scale scenarios having higher agent
counts.

1 Introduction
Multi-Agent Path Finding (MAPF) addresses the funda-
mental challenge of computing collision-free trajectories for
multiple agents navigating a shared environment. Its effec-
tive solving is crucial for deploying a wide array of multi-
agent systems, from automated warehouses and robotic
swarms to autonomous vehicle coordination (Sharon et al.
2015). Despite its practical significance, MAPF is compu-
tationally demanding, classified as NP-hard in its general
form, which can render traditional centralized search meth-
ods intractable as the number of agents or the complexity of
the environment increases (Ren et al. 2025; Sartoretti et al.
2019).

Extensive research in MAPF has explored various coor-
dination paradigms, each with different implications for in-
formation availability and system performance. Centralized
approaches, such as Conflict-Based Search (CBS) (Sharon
et al. 2015) and its efficiency-focused variant ICBS (Bo-

Figure 1: An example MAPF problem and our four-stage plan-
ning pipeline. Left: Three agents (A1, A2, A3) navigate a grid with
static obstacles (dark gray). The diagram illustrates a future vertex
collision (red X), where two agents would occupy the same cell,
and an edge collision (red arrows), where agents would swap adja-
cent cells. Top Right: The varying levels of information available
to Agent A1 under centralized (all agent positions and goals), dis-
tributed (nearby agent positions and goals), and decentralized (only
nearby agent positions) paradigms. Bottom Right: The four stages
of our framework, from initial Path Planning (S1) to Collision De-
tection (S2), Resolution (S3), and Replanning (S4).

yarski et al. 2015), typically assume full observability of the
environment and agent states, helping them generate optimal
plans. However, as the number of agents or the size of the en-
vironment increases, joint planning and conflict resolution
become computationally expensive. Additionally, requiring
agents to share full information raises privacy concerns, lim-
iting applicability in confidential settings motivating strate-
gies that reduce reliance on global information. Early de-
coupled methods like M∗ (Wagner and Choset 2011) be-
gin with individual plans and only coordinate agents in con-
flict, offering scalability but often sacrificing optimality or
completeness. More recently, Multi-Agent Reinforcement
Learning (MARL) has emerged to address coordination and
partial observability in dynamic settings. For example, PRI-
MAL (Sartoretti et al. 2019) trains agents to plan using
partial views, learning implicit coordination, while meth-
ods like FOLLOWER (Skrynnik et al. 2024) reduce explicit
communication by relying on global heuristic maps. These
decentralized methods improve scalability but may reduce
solution quality and leave conflicts unresolved due to lim-
ited information.

To address these limitations, we propose a novel hy-
brid MAPF framework that combines decentralized plan-
ning with a lightweight centralized coordinator, focusing
on minimizing inter-agent information sharing while main-
taining solution feasibility. Our findings show that minimal,
targeted alerts are sufficient, reducing the total information
load by an estimated ∼93% compared to a continuous-
observation distributed paradigm (see Appendix A.1). In our
approach, agents primarily rely on decentralized, reinforce-
ment learning-based neural network planners that operate on
local observations (e.g., position coordinates), eliminating
the need for global information as well as local egocentric
maps. A central coordinator oversees agent trajectories, in-
tervening selectively by dynamically sharing targeted infor-
mation to prompt localized re-planning when conflicts are
anticipated. This work’s contributions are centered on this
selective coordination strategy. We introduce (1) a novel hy-
brid framework with this on-demand alert mechanism and
provide (2) a comprehensive empirical evaluation demon-
strating that our planning policy generalizes robustly from
a simple training regimen to larger, more complex environ-
ments. Our evaluation is guided by two key research ques-
tions: (RQ1) Given the observation constraints of a decen-
tralized setup, can an effective MAPF algorithm be created
with one agent knowing nothing about other agents? If not,
what information must it need at a minimum? and (RQ2)
How does the proposed hybrid method compare to leading
alternative search- and learning-based approaches in terms
of performance, solution quality, and scalability?

2 Background and Literature Review
2.1 Multi-Agent Path Finding
Let G = (V,E) be an undirected graph, where V is the set of
vertices (grid cells) and E ⊆ V × V is the set of edges con-
necting adjacent cells. A team of n agents A = {a1, . . . , an}
must move from start vertices si ∈ V to goal vertices gi ∈
V , where (si, gi) ̸= (sj , gj),∀i ̸= j : i, j ∈ {1, ..., n}. Time
is discretized into steps t = 0, 1, 2, . . ., and at each step, an
agent may either move along an edge or wait. A path for
agent ai is a sequence πi = (vi0, v

i
1, . . . , v

i
Ti
) with vi0 = si

and viTi
= gi. A solution to MAPF is Π = {π1, . . . , πn}, and

it is collision-free if for all i ̸= j and all t, vit ̸= vjt (vertex
collision free) and (vit, v

i
t+1) ̸= (vjt+1, v

j
t) (edge collision

free). The primary goal in standard MAPF is typically to find
a path set Π that is collision-free (Sharon et al. 2015). Com-
mon efficiency objectives include minimizing the makespan,
maxi Ti, minimizing the sum of individual completion times
(sum-of-costs),

∑
i Ti, or minimizing the number of colli-

sions.
An important consideration in defining a MAPF problem

instance arises from agents potentially reaching their targets
at different time steps, thus requiring a clear definition of
how an agent behaves after it has reached its target gi at time
Ti, but while other agents may still be en route. Two com-
mon settings are used to address this scenario (Stern et al.
2019a). The first setting, typically referred to as stay at tar-
get, considers that an agent, upon reaching its goal, remains
at that vertex until all other agents in the team have also

reached their respective targets. This waiting agent contin-
ues to occupy its target vertex, potentially causing conflicts
if another agent’s plan requires traversing or occupying that
vertex at any time t ≥ Ti up to the completion time of the
entire solution. The second setting, disappear at target, as-
sumes an agent is effectively removed from the environment
immediately upon reaching its target. Consequently, its path
concludes at time Ti, and it poses no further collision risk
nor occupies any vertex for t > Ti. In our work, we adopt
the second setting, disappear at target. This setting is partic-
ularly relevant for applications like drone delivery, where an
agent’s task is considered complete upon arrival at a target
location.

2.2 Coordination Paradigms
As formalized by Sharon et al. (Sharon et al. 2015), solution
approaches to MAPF problems can be categorized based
on their coordination strategy. We extend this by focusing
on three key elements: state observability (global vs. local),
communication (allowed vs. none), and control (centralized
vs. decentralized). In centralized paradigms, a global plan-
ner with full observability of the entire state controls all
agents, and communication is implicit through this central
controller. By contrast, other approaches grant agents local
control over their actions. Within this category, we draw a
key distinction based on communication: In distributed ap-
proaches, agents that plan their own paths are allowed to
explicitly exchange information, such as local observations,
intended paths, or goals, with other agents to achieve coop-
erative behavior. In decentralized MAPF, as defined in this
work, inter-agent communication during execution is elim-
inated. Agents plan and act entirely independently, relying
only on their own local information. Finally, hybrid frame-
works, like the one we propose, combine these elements.
They typically employ a central coordination mechanism
that has full observability to detect conflicts and selectively
intervene, while agents otherwise plan in a decentralized
manner. In our work, we adopt a hybrid framework with a
customized information sharing mechanism as described in
Section 3.

2.3 Literature Review
Search-based Methods: Research on MAPF has evolved
from centralized to more scalable methods. Early ad-
vancements include M∗, which dynamically couples agent
searches upon conflict for optimality and completeness
(Wagner and Choset 2011), and Increasing Cost Tree Search
(ICTS), which employs cost allocation and then checks for
conflict-free solutions from sets of single-agent paths, yield-
ing significant speedups over joint-space search (Sharon
et al. 2013). A pivotal development was CBS, where agents
independently plan paths using A∗, and a centralized detec-
tor resolves conflicts by branching with new constraints for
involved agents, ensuring optimality (Sharon et al. 2015).
To enhance scalability while preserving optimality, variants
such as ICBS integrate cardinality heuristics and meta-agent
merging to accelerate convergence (Boyarski et al. 2015).
For very large instances, suboptimal repair strategies like
Large Neighborhood Search (LNS) generate initial solutions

(often via prioritized planning) and iteratively repair collid-
ing agent subsets under a centralized control loop (Li et al.
2022). However, these methods face scalability challenges
as the number of agents increases and often depend on ex-
tensive global information for coordination.

Learning-based Methods: In parallel, learning-based
approaches address partial observability and communica-
tion constraints. PRIMAL and PRIMAL2 train decentral-
ized policies via a combination of imitation learning from
an expert centralized planner and reinforcement learning
(PRIMAL2 enhancing local observations for better coor-
dination), effectively implementing a centralized training
and decentralized execution (CTDE) paradigm (Sartoretti
et al. 2019; Damani et al. 2021b). SCRIMP introduces a
transformer-based communication module enabling agents
with limited fields of view to coordinate effectively, achiev-
ing decentralized coordination without a central execution-
time coordinator (Wang et al. 2023). To function in real-
world settings, each agent must carry onboard sensing,
e.g., RGB-D cameras or LiDAR scanners, and implement
an inter-agent communication protocol for goal disclosure,
which introduces additional computational overhead and
raises privacy concerns. While offering adaptability and de-
centralized execution, learning-based methods can require
significant training data, may struggle with generalization,
and often provide weaker guarantees on solution quality or
completeness when relying purely on local information.

Hybrid Methods: Hybrid planning-learning paradigms
seek the strengths of both worlds. Authors in (Skrynnik et al.
2024) introduce FOLLOWER, which involves each agent
using a congestion-aware A∗ planner to determine its sub-
goals, then executing a fully decentralized RL policy for
lifelong replanning. More recently, hybrid frameworks like
LNS2+RL, introduced by Li et al., have emerged, augment-
ing LNS by employing MARL for early, localized conflict
resolution, then relying on efficient search-based planning
for final refinement (Wang et al. 2025). These existing hy-
brid approaches, while innovative, can involve complex in-
tegrations and may still face trade-offs between optimality,
scalability, or specific information dependencies (like global
congestion maps (Skrynnik et al. 2024)).

To enable a structured comparison of diverse MAPF tech-
niques (search-based, learning-based, and hybrid), we adopt
the four-stage MAPF pipeline: S1 (Agent Planning), S2
(Collision Detection), S3 (Collision Avoidance Policy), and
S4 (Agent Replanning). Within this structure, CBS uses
decentralized A* search for S1/S4 and centralized high
level solver for collision resolution in S2/S3 for optimality
(Sharon et al. 2015). LNS employs a centralized loop for
all four stages, managing path generation, detection, repair,
and subset replanning, thereby trading optimality for scal-
ability (Li et al. 2022). Learning-based planners like PRI-
MAL and SCRIMP typically use local observations for de-
centralized S1-S4 execution, coordinating without a central
controller (Sartoretti et al. 2019; Wang et al. 2023); how-
ever, practical deployments can require sensors (eg., cam-
era, LiDAR etc.) and communication, adding computational
overhead and increase sensing cost. Hybrid methods such as
FOLLOWER use global congestion maps with A∗ search for

S1, then decentralized RL policy for S2-S4, often without
further communication (Skrynnik et al. 2024). LNS2+RL
applies centralized LNS for S1-S3, while S4 uses a hybrid
policy (MARL or prioritized planning) for subsets, balanc-
ing key trade-offs (Wang et al. 2025). Refer to Table 2 in the
Appendix Section A.2 for a detailed categorization of these
methodologies.

Together, these works highlight key limitations of exist-
ing MAPF paradigms: centralized methods face scalabil-
ity and privacy concerns; purely learning-based approaches
compromise solution quality; and current hybrid solutions
often still depend on significant centralized communication
or coordination overhead with higher sensing cost. The hy-
brid framework introduced in Section 3, which is the focus
of our work, is specifically designed to mitigate these limita-
tions. It strategically reduces inter-agent information sharing
to maintain solution feasibility, thereby addressing the afore-
mentioned information management challenges while also
aiming to preclude the additional sensing costs and compu-
tational overhead common in learning-based methods.

3 Methodology
3.1 Approach Summary
We propose a hybrid coordination framework that lever-
ages decentralized RL-based path planning together with
centralized collision detection and control. While conceptu-
ally similar to the high-level loop of Conflict-Based Search
(CBS), our framework differs significantly in its resolution
step: it does not build a constraint tree or perform backtrack-
ing, instead issuing targeted alerts that prompt heuristic-
based replanning from the local RL agent. The proposed
method’s four-stage MAPF pipeline is detailed below.

S1: Decentralized Path Planning Each agent ak gener-
ates an independent trajectory

ρk = πθ(sk, gk) = (vk0 , . . . , v
k
τk
), (1)

where vk0 = sk, vkτk = gk, and πθ is a parameterized RL
policy trained to minimize path length and local collision
risk over a planning horizon H . No information about other
agents is exchanged during this stage. Let τi denote the set
of makespan of each agent and τ = {τ1, . . . , τn} be the set
of all such makespans.

S2–S3: Centralized Collision Detection and Control A
central module takes as input the independent trajectories of
all the agents ρ = {ρ1, . . . , ρn} along with the makespan set
τ , and identifies all vertex and edge conflicts, using

C(ρ, τ) = {(tj ,∆c, Ac) | (vktj = vltj := ∆c) ∨

((vktj , v
k
tj+1

) = (vltj , v
l
tj+1

) := ∆c)} (2)

Ac = {{ak, al} : ρk|{tj} = ρl|{tj} = ∆c ∨ ρk|
{(tj , tj+1)} = ρl|{(tj , tj+1)} = ∆c,∀k ̸= l},

(3)

where ρk|{tj} and ρk|{(tj , tj+1)} denotes the position of
the kth agent at step tj and steps (tj , tj+1), respectively.

For each conflict c = (tj ,∆c, Ac) ∈ C(ρ, τ), which oc-
curs at timestep tj , the controller issues an alert A defined
as

A(c) = µck = (ack , tj−r,∆c), r ≥ j, (4)

where policy µck is used to select an agent ack ∈ Ac. Ex-
ample policies for this agent selection is described in Section
3.2. Once an alert is issued to an agent, the selected agent is
prompted to perform a constrained replanning of its trajec-
tory for a rollout window {tckj−r, . . . , t

ck
j , . . . , τck}, where r

is the rewind window by avoiding the collision set ∆c.

S4: Decentralized Replanning Upon receiving a colli-
sion alert, agent ack truncates its path at vcktj−r

, denoted as

ρck|tj−r−1
= (vck0 , . . . , vcktj−r−1

). (5)

The agent then generates a new path segment ρ′ck from vcktj−r

to its goal gck by applying its RL policy πθ. This replan-
ning incorporates new constraints derived from the alert. For
static obstacle avoidance (S4.1), the policy is typically de-
rived by incorporating a fixed constraint, wherein the agent
is supposed to avoid forbidden cells, as captured in Eq. 6,
where ∆c represents the set of static cells identified in the
alert, and a segment of the new path is generated as:

ρ′ck = πθ(v
ck
tj−r

, gck | vckti /∈ ∆c, i ≥ j − r). (6)

Alternatively, for dynamic obstacle avoidance (S4.2), the re-
planning must account for the predicted movements of other
agents involved in the collision. In this case, the RL policy
is conditioned on the sub-paths of the conflicting agents

ρ′ck = πθ(v
ck
tj−r

, gck | vckt ̸= vclt , vclt ∈ ρcl ,

∀l ̸= k, acl ∈ Ac,∀t ∈ [tj−r, tj+r]). (7)

The information guiding the replanning–whether it con-
stitutes minimal details such as static obstacle constraints
(Eq. 6), or more detailed sub-path information about col-
liding agents’ paths treated as dynamic obstacles (Eq. 7)–
is integrated into the RL agent’s decision-making process
(by modifying its state representation, more details in the
Section 3.2) to guide it towards a conflict-free solution. The
agent’s new complete trajectory ρnewck

is formed by concate-
nating the initial segment with the newly planned one, given
by

ρnewck
= ρck|tj−r

∥ρ′ck . (8)

This updated trajectory is submitted to the central controller.
This iterative cycle of detection (S2), control (S3), and selec-
tive replanning (S4) continues until a globally conflict-free
solution is achieved (C(ρ, τ) = ∅).

Our hybrid MAPF framework manages a precise flow of
information, essential to support our claims of reduced infor-
mation sharing and adaptive planning. The process begins
with fully decentralized agent planning (S1), where each
RL-driven agent uses only its local information before sub-
mitting its intended path ρk to a central coordinator. This
coordinator, leveraging its global observation of all submit-
ted paths, performs collision detection (S2) to identify the

set of all potential conflicts C(ρ, τ). Following detection,
the central control module (S3) issues targeted alerts; it se-
lects a specific agent ack and determines the rewind point
tj−r from which the agent must replan, effectively issu-
ing an alert A(c). S3 also governs the level of informa-
tion to be shared for the subsequent decentralized replanning
(S4). Initially, the alerted agent ack attempts to resolve the
conflict using minimal information, typically by treating its
own conflicting path segment ∆c as a static obstacle (S4.1).
If this localized, low-information approach proves insuffi-
cient, S3 then shares additional information with the agent–
specifically, a subset of the path of other directly conflicting
agents–for a more informed replan (S4.2). This tiered strat-
egy—from purely local information in S1, to targeted alerts
from S3, and then to progressively detailed yet still localized
conflict information for S4—ensures that inter-agent infor-
mation sharing is demand-driven and sparse. Agents com-
municate their revised plans ρnewck

back to the coordinator,
and this iterative cycle of detection and selective, adaptive
replanning continues until a globally conflict-free solution
is achieved (C(ρ, τ) = ∅). This methodology substantiates
our framework’s ability to ensure feasibility while operating
with significantly reduced information exchange.

3.2 Policy Representation

(S1 & S4) Decentralized Path Planning: In our pro-
posed framework, we address the challenges of decentral-
ized multi-agent pathfinding in dynamic environments by in-
tegrating collision awareness directly into the agent’s obser-
vation. Our approach leverages an RL-based decentralized
planner that receives a multi-channel grid observation.

Observation Space: Each agent’s observation is a tensor
s ∈ RH×W×4, where H and W are the height and width of
the grid. The four channels correspond to: (a) ObstacleMap -
A binary map (1 if a static obstacle is present, 0 otherwise).
(b) AgentMap - A binary map marking the agent’s current
position. (c) GoalMap - A binary map indicating the goal
position. (d) AlertMask - A dynamic collision alert map (ini-
tially all zeros, updated during execution). This alert mask is
updated online by a centralized collision detection module
that simulates timely collision alerts. In addition, the obser-
vation includes low-dimensional features comprising a unit
vector pointing from the agent’s current position to the goal
and the Euclidean distance.

Action Space: The agent operates in a discrete action
space, A = {0, 1, 2, 3, 4}, corresponding to movements in
the four cardinal directions (e.g., Up, Down, Left, Right,
WAIT).

Reward Structure Our reward function, similar to PRI-
MAL (Sartoretti et al. 2019), promotes efficient, collision-
free navigation and discourages unproductive behaviors.
Agents receive +20 for reaching the goal. Penalties include:
-3 for collisions with obstacles, -2 for timeout, -0.02 per time
step taken (to encourage efficiency), and -0.1 for a ‘WAIT’
action, a penalty that encourages path progression over sta-
tionary waiting. An additional -0.05 penalty is applied if the
agent is near a dynamic obstacle.

(S2) Rule-Based Collision Detection: The collision de-
tection module (S2) functions as a deterministic, rule-based
system. It takes the set of all current agent trajectories
ρ = {ρ1, . . . , ρn} and their makespans τ as input. For each
timestep t = {0, 1, ..., TM} upto the maximum makespan
(TM), the module systematically scans for two primary
types of conflicts: vertex conflicts (where vkt = vℓt for k ̸= ℓ)
and edge conflicts (where (vkt , v

k
t+1) = (vℓt+1, v

ℓ
t) for k ̸=

ℓ). Upon detecting a conflict, characterized as c = (t, v, Ac)
where Ac is the set of agents involved, S2 reports this con-
flict c to the S3 control module for resolution. The detection
process for all conflicts is computationally efficient, with a
time complexity of O

(∑
k |ρk|

)
per cycle, linear in the sum

of all agent path lengths.

(S3) Heuristic-Based Collision Avoidance Control:
Upon notification of a conflict c = (t, v, Ac) from S2, the
S3 control module formulates and issues an alert A(c) to a
selected agent. This involves choosing an agent ack ∈ Ac

to replan, determining its replan start point tj−r by selecting
an appropriate rewind value r, and specifying the replanning
approach. We consider three agent selection policies (from
Ac): (i) Random choice (i.e., ack ∼ UniformRandom(Ac)),
(ii) selecting the agent Farthest from its goal (ga) based
on Manhattan distance dManh(v

a
tj−r

, ga), or (iii) identify-
ing the agent with the Fewest Future Collisions (FFC), i.e.,
ack = argmina∈Ac

∣∣{c̃ | c̃ ∈ C(ρ, τ), a ∈ Ac̃}
∣∣. In our

work, we present the results with FFC agent selection pol-
icy. We present the comparative results considering other
policies in the Appendix Section A.4. S3 then dictates the
replanning formulation, choosing either Static Obstacle Re-
planning (where ack avoids its own problematic vertices vc)
or Dynamic Obstacle Replanning (where ack avoids speci-
fied sub-path trajectories vclt ∈ ρcl ,∀l ̸= k, acl ∈ Ac,∀t ∈
{tj−r, . . . , tj+r} of other conflicting agents aℓ ∈ Ac). Our
framework initially employs Static Obstacle Replanning for
resolving a conflict; if this approach proves insufficient to re-
solve the conflict, Dynamic Obstacle Replanning is utilized.
Abalation study considering individual replanning strategies
and their implication on our framework’s performance is
presented in the Appendix Table 5.

4 Experimental Setup
In this section we first describe how we train the per-agent
navigation policy used in stage S1, then detail the maps,
problem instances, and competing planners used to evalu-
ate stages S2–S4, and define the performance metrics used
to evaluate.

Training Procedure We train a parametrized RL model
Qθ(s, a) using the DDQN algorithm(Van Hasselt, Guez,
and Silver 2016), incorporating prioritized experience replay
(PER) and ε-greedy exploration, to enable an agent to navi-
gate to a specified goal in the presence of both static and dy-
namic obstacles. Each dynamic obstacle possesses a hidden
goal and follows precomputed trajectories, executing only
valid moves; this allows for the simulation of online col-
lision alerts during inference from the S3 stage. Training is
performed for 30 000 episodes on an 11×11 maze grid, with

each episode capped at a maximum of Tmax = 50 steps.
The curriculum for environmental complexity is scheduled
as follows: during the first 500 episodes, static-obstacle den-
sity ρs = 0.10 and dynamic-obstacle count nd = 0; from
episode 500 to 2999, ρs = 0.10 and nd = 1; from episode
3000 to 5999, ρs = 0.20 and nd = 2; and for episode 6000
onward, ρs = 0.30 and nd = 4.

Input observations are normalized to zero mean and
unit variance before being fed to the network. Transitions
(st, at, rt, st+1) are stored in a prioritized experience re-
play buffer of size 106. At each learning step, a mini-batch
of 128 transitions is sampled. The agent selects actions us-
ing an ε-greedy policy, where ε decays from ε0 = 1.0
to 0.01 over the course of training according to εt+1 =
max(0.01, 0.999 εt). Crucially, during both exploration and
exploitation (e.g., when calculating the target Q-value),
only actions at deemed valid by an action mask mt ∈
{0, 1}|A| are considered for efficient exploration (Damani
et al. 2021b).

The Q-network parameters θ are updated via gradient de-
scent using the Adam optimizer with a learning rate α =
3 × 10−4. The discount factor is γ = 0.97. A separate
target network, with parameters θ−, provides stable targets
and is updated by copying θ every 300 steps. Updates min-
imize the prioritized, importance-weighted Bellman error.
The target value yt and TD-error δt are computed as: yt =
rt + γ Qθ−

(
st+1, argmaxa′ Qθ(st+1, a

′) s.t. mt(a
′) = 1

)
,

δt = yt − Qθ(st, at), The loss function is then calculated
as L(θ) = Ei∼p(i)

[
wi δ

2
i

]
, where the sampling probability

p(i) ∝ |δi|α (α is a hyperparameter for PER) and wi are
importance-sampling weights that correct for the bias intro-
duced by prioritized sampling.

In addition to the DDQN model, a Proximal Policy Op-
timization (PPO) based model was also trained; details re-
garding its architecture (including the one used for DDQN
model) and training procedure, along with comparative per-
formance, are provided in the Appendix Section A.3. The
DDQN model was selected due to its superior performance
over the PPO model - results are presented in Table 3.

Evaluation Scenarios and Baselines We evaluate our
framework’s performance and scalability across three dis-
tinct grid configurations, representing two primary map
types: maze and warehouse. All evaluations use ten ran-
domly generated problem instances per configuration. For
the maze map type, we test on an 11× 11 grid with approx-
imately 45% static obstacles (5 to 20 agents) and a larger
21 × 21 grid with approximately 35% static obstacles (32,
64, and 96 agents). For the warehouse map type, we uti-
lize a 25 × 25 grid layout with approximately 24% static
obstacles as shelves (32, 64, and 96 agents). Our proposed
hybrid framework is evaluated through two variants, Alert-
BFS and Alert-A*, which are named based on their RL pol-
icy rollout strategy (Breadth-First Search or weighted A-star
search, respectively). The impact of our specific replanning
strategies is further analyzed in an ablation study in Ap-
pendix Table 5. These are compared against search-based
planners, Conflict-Based Search (CBS) (Sharon et al. 2015)
and Improved CBS (ICBS) (Boyarski et al. 2015), and lead-

ing learning-based online planners PRIMAL (Damani et al.
2021a) and SCRIMP (Wang et al. 2023) with the MAPF for-
mulation of disappear at goal. While our framework vari-
ants operate within our proposed four-stage pipeline (S1–
S4), the baseline methods are executed as standalone algo-
rithms. Per-instance time limits are 50 seconds for 11 × 11
mazes, 30 minutes for 21×21 mazes, and 1 hour for 25×25
warehouse scenarios. For online planners, the step limits are
256 for the 11×11 maze, and 512 for both the 21×21 maze
and the 25×25 warehouse, as detailed in Table 1. Additional
results on various other map configurations are provided in
the Appendix Section A.4.

Performance Criteria We evaluate our MAPF framework
using standard metrics. Success Rate (SR) is the proportion
of instances solved within defined time limits. For success-
ful instances, Makespan (MS) measures the time until the
last agent reaches its goal. The number of Collisions (CO)
measures the total count of path disagreements detected and
successfully resolved by the framework to produce the final
collision-free solution. A non-zero CO in a successful run
reflects the planner’s total conflict resolution workload. Fi-
nally, total Time (T) measures the computational cost until
a solution is found or the time limit is exceeded. Learning-
based methods are evaluated by the average number of steps
taken in the environment.

5 Results and Discussion
Here we present an empirical study, evaluating our central
hypothesis: a MAPF framework with strategically reduced
information sharing can achieve robust performance. We
address our RQs concerning minimal information needs and
comparative performance against approaches with different
information paradigms using the experimental results pre-
sented in Table 1.

(RQ1): Given the observation constraints of a decentral-
ized setup, can an effective MAPF algorithm be created with
one agent knowing nothing about other agents? If not, what
information must it need at a minimum? Ans. No—if agents
have zero knowledge of one another, MAPF fails, losing
completeness guarantees; but solutions are possible with tar-
geted, minimal information sharing. Table 5 in the appendix
presents comparative results for various inter-agent informa-
tion sharing settings.

Now, we turn our attention to the strategically limited
minimal information sharing case. In our framework, strate-
gically informed alerts convey either (S4.1) static constraints
(the conflicting cell) or (S4.2) slightly richer, yet still local-
ized, dynamic constraints (the sub-path of only the directly
conflicting agent(s) for a short horizon). Table 1 shows per-
formance comparison of considered methodologies across
11x11 maze (a), 21x21 maze (b), and 25 × 25 (c) ware-
house maps, respectively. As shown in Table 1, the perfor-
mance of our framework, where agents initially plan with
only local information and receive minimal, targeted alerts
from a central coordinator upon conflict, achieves high Suc-
cess Rates (SR). Specifically, on the 11 × 11 and 21 × 21
maze grids, SRs are high (90%-100%). On the more struc-
tured 25 × 25 warehouse map (Table 1c), Alert-BFS and

Alert-A* also achieve 100% SR for 32 and 64 agents, with
Alert-A* maintaining a 60% SR in the dense agent scenario
(96 agents), demonstrating effectiveness across different en-
vironment types with this minimal information sharing strat-
egy. This success with minimal inter-agent information con-
trasts sharply with alternatives. Centralized planners (CBS,
ICBS) demand complete global knowledge of all agents’
paths, a requirement that, while enabling optimality, leads
to their low SR due to the combinatorial explosion in con-
flict resolution within practical time limits. In contrast, dis-
tributed learning frameworks (PRIMAL & SCRIMP) often
operate under the assumption that each planning agent pos-
sesses full observation, of other agents and their goals, in
a local field of view. While this localized observation can
facilitate decentralized decision-making, it implies a contin-
uous and potentially substantial information gathering (e.g.,
via onboard cameras or LiDAR sensors) and processing re-
quirement for each agent.

The success of our method across maze and warehouse
environments underscores that this on-demand information
is sufficient for high SR, thereby avoiding the continuous,
dense local information exchange. Our quantitative anal-
ysis, detailed in the Appendix A.1, shows that this on-
demand alert mechanism reduces the total information load
by ∼93% compared to a continuous-observation distributed
paradigm in this scenario.

(RQ2): How does the proposed hybrid method compare to
leading alternative search- and learning-based approaches
in terms of performance, solution quality, and scalability?
Ans. Our hybrid framework exhibits a compelling bal-
ance of performance and scalability with distinct trade-offs
against established search-based and learning-based meth-
ods, as detailed in Table 1.

Our Python-based framework demonstrates higher SR
and scalability compared to search-based optimal solvers.
CBS/ICBS (C++ based) shows constantly lower SR with in-
creasing environment complexity, failing to solve any in-
stances on the 21 × 21 maze (for 32+ agents) and the
25 × 25 warehouse map. While CBS/ICBS achieves opti-
mal MS when they solve (Table 1a), their reported Collision
(CO) counts (Table 1a) for such cases are very high; our
methods report significantly fewer collisions when they suc-
ceed on these smaller maps.

PRIMAL exhibits low SR across all tested configurations,
often hitting step limits without success. SCRIMP is a strong
learning-based performer with fast inference times and good
MS. On the 11× 11 and 21× 21 mazes, its SR is compara-
ble or better than our methods in some low-density cases,
but can decline in denser scenarios (21 × 21, 64 agents:
SCRIMP 20% SR vs. Alert-BFS 90% SR). On the 25 × 25
warehouse map, SCRIMP maintains 100% SR for 32 and
64 agents, and achieves 90% SR for 96 agents, outperform-
ing Alert-BFS (10% SR) and Alert-A* (60% SR) at this
highest agent count in terms of success. However, SCRIMP
also demonstrates significantly lower CO values than our
methods across all successful warehouse instances attribut-
ing to its efficient multi-agent training. A critical factor for
online planners is the offline training investment. For in-
stance, PRIMAL’s extensive training on varied map sizes in-

Table 1: Comparison of performance metrics for different methods on an 11×11 grid (5–20 agents, ∼45% obstacles), a 21×21 grid (32, 64,
and 96 agents, ∼35% obstacles), and a 25 × 25 warehouse grid (32, 64, 96 agents, ∼24% obstacles). Results are averaged over 10 problem
instances per configuration. Key metrics include Success Rate (SR), Makespan (MS), Collisions (CO), and Time (T), with Time averaged
over all trials. For learning-based methods, the average steps taken while solving the problem instances are presented in brackets along with
average wall-clock time taken.

(a) 11x11 maze with 50 sec. time limit per problem instance (256 steps for learning-based methods)

SR (↑) MS (↓) CO (↓) T (s) (↓)

Methods 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20

Alert-BFS 100.00% 100.00% 98.00% 17.8 23.6 27.4 9 53 191 1.1 4.2 11.8
Alert-A* 100.00% 96.00% 82.00% 16.1 20.7 24.0 10 59 173 3.3 12.0 25.8
CBS 85.00% 34.00% 2.00% 13.8 14.3 17.0 559 8785 3895 8.3 30.7 35.3
ICBS 85.00% 26.00% 10.00% 14.0 14.8 12.8 885 3486 1466 5.9 25.1 28.6
PRIMAL 61.67% 48.00% 28.00% 71.7 89.9 104.8 - - - 1.4 (142) 3.4 (176) 6.1 (214)
SCRIMP 95.00% 70.00% 60.00% 19.3 28.6 38.8 1 2 8 0.4 (31) 1.6 (97) 3.9 (124)

(b) 21x21 maze with 30 min. time limit per problem instance (512 steps for learning-based methods)

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

Alert-BFS 100.00% 90.00% 0.00% 86.6 131.4 - 528 18909 - 2.7 23.9 30.0
Alert-A* 100.00% 80.00% 0.00% 41.4 72.0 - 457 11379 - 3.3 23.5 30.0
CBS 0.00% 0.00% 0.00% - - - - - - 30.0 30.0 30.0
ICBS 0.00% 0.00% 0.00% - - - - - - 30.0 30.0 30.0
PRIMAL 0.00% 0.00% 0.00% - - - - - - 0.8 (512) 2.1 (512) 1.8 (512)
SCRIMP 100.00% 20.00% 10.00% 65.9 135.0 94.0 15 220 357 0.1 (66) 1.0 (437) 2.4 (470)

(c) 25x25 warehouse with 1 hour time limit per problem instance (512 steps for learning-based methods)

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

Alert-BFS 100.00% 100.00% 10.00% 94.3 125.9 96.0 237 6379 26553 5.2 28.0 59.5
Alert-A* 100.00% 100.00% 60.00% 40.5 43.7 50.8 211 3129 16277 4.7 19.2 51.8
CBS 0.00% 0.00% 0.00% - - - - - - 60.0 60.0 60.0
ICBS 10.00% 0.00% 0.00% 38.0 - - 123107 - - 57.9 60.0 60.0
PRIMAL 0.00% 0.00% 0.00% - - - - - - 1.0 (512) 3.1 (512) 6.6 (512)
SCRIMP 100.00% 100.00% 90.00% 60.2 49.0 101.7 2 14 161 0.1 (60) 0.3 (49) 1.1 (143)

volved approximately 20 days on significant computational
resources (Damani et al. 2021a). SCRIMP, with its sophisti-
cated transformer-based architecture and PPO training, also
implies a substantial training regimen across diverse con-
figurations to achieve its reported performance (Wang et al.
2023). In contrast, our RL planning model, trained only on
11 × 11 maze grids, was developed with a comparatively
modest regimen: training was conducted on a Mac Mini
equipped with an Apple M4 Pro chip (14-core CPU, 20-core
GPU, 16-core Neural Engine) and 48GB unified memory,
running for approximately 6 to 8 hours. Its subsequent effec-
tive performance when tested on different map types (map
and warehouse) and larger grid sizes (up to 25 × 25) indi-
cates strong generalization from this simpler training setup.

6 Conclusions
Our hybrid framework combines decentralized RL-based
planning with only minimal, targeted coordinated alerts–
static conflict cell flags or brief conflict tracks–to maintain
better SR across various challenging scenarios. While it in-

curs more collisions (CO) and sometimes longer makespan
(MS) compared to highly specialized methods like SCRIMP,
and its SR declines in extremely dense scenarios, it often
delivers better overall feasibility and scalability, in scenar-
ios with increasing agent counts, than purely search-based
methods and PRIMAL by strategically sharing minimum
inter-agent information.

Effective multi-agent coordination with reduced informa-
tion exchange, as explored in this research, will lead to
privacy-aware automated systems, enabling broader use in
complex privacy-preserving applications like autonomous
driving. Despite these promising results, our work has limi-
tations. The current framework, optimized for disappear at
target setting, may face challenges in stay at target behavior.
Future work will investigate the minimal information nec-
essary to effectively manage these stay at target scenarios,
aiming to extend the framework’s applicability without com-
promising its core principle of sparse information exchange.
Additionally, an ablation study of richer AlertMask en-
codings, like dynamic occupancy maps, could improve re-
planning efficiency.

References
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Betzalel,
O.; Tolpin, D.; and Shimony, E. 2015. Icbs: The improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the International Symposium on Combi-
natorial Search, volume 6, 223–225.
Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021a.
PRIMAL 2: Pathfinding via reinforcement and imitation
multi-agent learning-lifelong. IEEE Robotics and Automa-
tion Letters, 6(2): 2666–2673.
Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021b.
PRIMAL2: Pathfinding via Reinforcement and Imitation
Multi-Agent Learning—Lifelong. IEEE Robotics and Au-
tomation Letters, 6(2): 2666–2673.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2022. MAPF-LNS2: Fast Repairing for Multi-Agent Path
Finding via Large Neighborhood Search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
10256–10265.
Ren, J.; Eric, E.; Kumar, T. K. S.; Koenig, S.; and Ayanian,
N. 2025. Empirical Hardness in Multi-Agent Pathfinding:
Research Challenges and Opportunities. In Blue Sky paper
at 24th International Conference on Autonomous Agents and
Multiagent Systems.
Sartoretti, G.; et al. 2019. PRIMAL: Pathfinding via Re-
inforcement and Imitation Multi-Agent Learning. IEEE
Robotics and Automation Letters, 4(3): 2559–2566.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and
Moritz, P. 2015a. Trust Region Policy Optimization. In Pro-
ceedings of the International Conference on Machine Learn-
ing, 1889–1897. PMLR.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M. I.; and
Abbeel, P. 2015b. High-Dimensional Continuous Control
Using Generalized Advantage Estimation. arXiv preprint
arXiv:1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. Artificial Intelligence, 195(C): 470–495.
Skrynnik, A.; Andreychuk, A.; Nesterova, M.; Yakovlev, K.;
and Panov, A. 2024. Learn to Follow: Decentralized Life-
long Multi-Agent Pathfinding via Planning and Learning.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 38, 17541–17549.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019a. Multi-agent pathfinding: Definitions, variants, and

benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151–158.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019b. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. Symposium on
Combinatorial Search (SoCS), 151–158.
Van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30.
Wagner, G.; and Choset, H. 2011. M*: A Complete Mul-
tirobot Path Planning Algorithm with Performance Bounds.
In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 3260–3267.
Wang, Y.; Duhan, T.; Li, J.; and Sartoretti, G. A. 2025.
LNS2+RL: Combining Multi-agent Reinforcement Learn-
ing with Large Neighborhood Search in Multi-agent Path
Finding. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence.
Wang, Y.; Xiang, B.; Huang, S.; and Sartoretti, G. 2023.
Scrimp: Scalable communication for reinforcement-and
imitation-learning-based multi-agent pathfinding. In 2023
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 9301–9308. IEEE.

A Appendix
Appendix Contents

A.1. A Quantitative Model of Information Load 10

A.2. Literature review . 10
Literature Categorization Table 2 12

A.3. Training Methods . 11
A.3. PPO Training Procedure . 11
A.3. Neural Network Architecture 12
A.3. Model Comparison . 13

DDQN training performance - Figure 2
PPO training performance - Figure 3

A.3. Model Comparison . 14
Table 3 .

A.4. Additional Experiments . 14
A.4. Agent Selection Policy Comparison 14

Table 4 . 16
A.4. Inter-agent Information Sharing Comparison . 17

Table 5 . 18
A.4. Benchmark Dataset Evaluation 17

Table 6 . 19

A.1 A Quantitative Model of Information Load
To quantitatively support our claim of reduced informa-
tion sharing, we developed a simplified model to esti-
mate the ”Total Information Load” of different coordina-
tion paradigms. This model is based on a simple Informa-
tion Unit (IU), defined as the data required to represent one
agent’s state (e.g., its coordinates) at a single timestep.

Model Assumptions Our calculation is based on the
11x11 maze scenario with 20 agents, using metrics from
the successful Alert-BFS runs in Table 1a.
1. Scenario Data: We use a 20-agent instance (N=20)

solved with a makespan (T) of 27 timesteps and requir-
ing the resolution of 191 conflicts (C).

2. Average Path Length (L): We assume an average initial
path length of 25 steps per agent.

3. Agent Density (D): For a distributed method like PRI-
MAL with a 10x10 FoV on an 11x11 grid, each agent
has near-global vision. Therefore, each agent continu-
ously observes all other N-1 agents. We set the average
density (D) to 19 neighbors.

4. Alert Size (Ialert): We assume each conflict alert sent by
our coordinator is a minimal, static alert costing 1 IU.

Comparative Calculation

Distributed Method (e.g., PRIMAL) The information
load is the continuous sensing and processing of all visible
neighbors by every agent at every timestep. The formula is
InfoDistributed = N × T ×D.

InfoDist. = 20× 27× 19

= 10,260 IU

Our Hybrid Method (Alert-X) The load is the one-time
path sharing in addition to all subsequent targeted alerts. The
formula is InfoAlert-X = (N × L) + (C × Ialert).

InfoAlert-X = (20× 25) + (191× 1)

= 500 + 191

= 691 IU

Conclusion This analysis highlights the difference in in-
formation architecture. The distributed method requires each
of its 20 agents to continuously sense and process a heavy
stream of local data, amounting to a total load of 10,260 IU.
In contrast, our hybrid method offloads this burden to a cen-
tral coordinator, resulting in a total information load of only
691 IU.

This represents a ∼93% reduction in the total informa-
tion load, quantifying the efficiency of our on-demand alert
system. While our method has a central coordinator, the bur-
den on each individual agent is drastically lower, as it does
not require constant, high-bandwidth sensing of its environ-
ment.

A.2 Literature review
Conflict-Based Search (CBS) S1 – Agent Planning: De-
centralized: Each agent independently computes its path
from the start to the goal using a single-agent pathfinding

algorithm (e.g., A∗). This decentralized planning allows for
efficient initial path computation without considering other
agents.

S2 – Collision Detection: Centralized: After individual
paths are planned, CBS centrally examines these paths to
detect conflicts, such as two agents occupying the same loca-
tion at the same time (vertex conflicts) or swapping positions
simultaneously (edge conflicts). This centralized detection
ensures systematic identification of all potential conflicts.

S3 – Collision Avoidance Policy: Centralized: Upon de-
tecting a conflict, CBS resolves it by adding constraints to
the agents’ paths. Specifically, it creates two new branches
in a constraint tree, each imposing a restriction on one of the
conflicting agents to avoid the conflict. This centralized pol-
icy ensures optimal conflict resolution by exploring different
constraint combinations (Sharon et al. 2015).

S4 – Agent Replanning: Decentralized: With new con-
straints in place, only the agents affected by these constraints
replan their paths. Each affected agent independently com-
putes a new path that adheres to the added constraints, main-
taining the decentralized nature of the replanning process.

Large Neighborhood Search (LNS) S1 – Agent Plan-
ning: Centralized: LNS-based methods, such as MAPF-
LNS2, begin with a centralized planning phase where ini-
tial paths for all agents are computed using a fast, subopti-
mal solver like Prioritized Planning (PP). This initial solu-
tion may contain conflicts but serves as a starting point for
further refinement (Li et al. 2022).

S2 – Collision Detection: Centralized: The system cen-
trally identifies conflicts (e.g., vertex or edge collisions) in
the initial set of paths. This global analysis ensures that all
potential conflicts are detected and can be addressed in sub-
sequent steps.

S3 – Collision Avoidance Policy: Centralized: LNS em-
ploys a centralized strategy to resolve conflicts by select-
ing subsets of agents (the ”neighborhood”) involved in col-
lisions and replanning their paths. Techniques like Safe In-
terval Path Planning with Soft Constraints (SIPPS) are used
to minimize the number of conflicts during this replanning
phase.

S4 – Agent Replanning: Centralized: The selected subset
of agents undergoes centralized replanning to resolve con-
flicts, while the paths of other agents remain unchanged.
This process iterates, with different neighborhoods selected
in each iteration, until a conflict-free set of paths is achieved
or a predefined time limit is reached.

PRIMAL and PRIMAL2 S1 – Agent Planning: Dis-
tributed: In both PRIMAL and PRIMAL2, each agent in-
dependently plans its path using policies learned through a
combination of RL and IL. These policies are trained to en-
able agents to navigate towards their goals based on local ob-
servations without centralized coordination (Sartoretti et al.
2019; Damani et al. 2021b).

S2 – Collision Detection: Distributed: Agents detect po-
tential collisions based on their local observations of the en-
vironment. They do not rely on a centralized system to iden-
tify conflicts but instead use their learned policies to antici-
pate and respond to nearby agents.

S3 – Collision Avoidance Policy: Distributed: Collision
avoidance is handled through the agents’ learned behaviors.
In PRIMAL2, enhancements such as improved observation
types have been introduced to facilitate better implicit co-
ordination among agents, especially in dense and structured
environments.

S4 – Agent Replanning: Distributed: Agents continuously
replan their paths in response to changes in their local envi-
ronment. This reactive planning allows them to adapt to dy-
namic scenarios, such as new goal assignments in lifelong
MAPF settings.

SCRIMP S1 – Agent Planning: Distributed: Each agent
independently plans its path using a policy learned through
a combination of RL and IL. Agents rely on a small local
FOV (as small as 3×3) and a transformer-based communi-
cation mechanism to share information with nearby agents,
enabling them to make informed decisions despite limited
local observations (Wang et al. 2023).

S2 – Collision Detection: Distributed: Agents detect po-
tential collisions based on their local observations and the
messages received from neighboring agents through the
communication mechanism. This decentralized approach al-
lows agents to anticipate and respond to nearby agents with-
out centralized coordination.

S3 – Collision Avoidance Policy: Distributed: Collision
avoidance is handled through the agents’ learned policies,
which incorporate a state-value-based tie-breaking strategy.
This strategy enables agents to resolve conflicts in symmet-
ric situations by assigning priorities based on predicted long-
term collective benefits and distances to goals.

S4 – Agent Replanning: Distributed: Agents continuously
replan their paths in response to changes in their local en-
vironment, leveraging intrinsic rewards to encourage explo-
ration and mitigate the long-term credit assignment problem.
This decentralized replanning allows agents to adapt to dy-
namic scenarios effectively.

Learn to Follow (FOLLOWER) S1 – Agent Planning:
Decentralized: Each agent independently plans its path to
the assigned goal using a heuristic search algorithm (e.g.,
A*). To mitigate congestion, the planner incorporates a
heatmap-based cost function that penalizes frequently occu-
pied areas, encouraging agents to choose less crowded paths.
A sub-goal (waypoint) is selected along the planned path to
guide short-term movement (Skrynnik et al. 2024).

S2 – Collision Detection: Decentralized: Agents detect
potential collisions based on their local observations. They
do not rely on a centralized system to identify conflicts but
instead use their learned policies to anticipate and respond
to nearby agents.

S3 – Collision Avoidance Policy: Decentralized: Colli-
sion avoidance is handled through the agents’ learned be-
haviors. A neural network-based policy guides the agent to-
ward its sub-goal while avoiding collisions. The policy is
trained using reinforcement learning, leveraging local obser-
vations without requiring global state information or inter-
agent communication.

S4 – Agent Replanning: Decentralized: Agents continu-
ously replan their paths in response to changes in their local

environment. This reactive planning allows them to adapt to
dynamic scenarios, such as new goal assignments in lifelong
MAPF settings.

LNS2+RL S1 – Agent Planning: Centralized: LNS2+RL
begins by centrally generating initial paths for all agents us-
ing a fast, suboptimal method like Prioritized Planning (PP).
This initial solution may contain collisions but serves as a
starting point for further refinement (Wang et al. 2025).

S2 – Collision Detection: Centralized: The system cen-
trally identifies conflicts (e.g., vertex or edge collisions) in
the initial set of paths. This global analysis ensures that all
potential conflicts are detected and can be addressed in sub-
sequent steps.

S3 – Collision Avoidance Policy: Hybrid: LNS2+RL em-
ploys a hybrid strategy for collision avoidance: Early Iter-
ations: Utilizes a MARL policy to replan paths for subsets
of agents involved in conflicts. This decentralized compo-
nent allows agents to learn cooperative behaviors to avoid
collisions. Later Iterations: Switches to a centralized PP
algorithm for replanning, aiming to quickly resolve any re-
maining conflicts.

S4 – Agent Replanning: Hybrid: Replanning in LNS2+RL
is conducted in a hybrid manner: Early Iterations: Selected
subsets of agents undergo decentralized replanning using the
MARL policy, promoting cooperative behavior. Later Iter-
ations: Replanning shifts to a centralized approach using
PP, focusing on efficiency and resolving any remaining con-
flicts.

A.3 Training Methods
PPO Training Procedure We train a single-agent nav-
igation policy πθ to reach a specified goal in the presence
of both static and dynamic obstacles. Dynamic obstacles are
each assigned a hidden goal and follow a precomputed tra-
jectory, executing only valid moves; this setup allows us to
generate online collision alerts during inference (cf. stage S3
of our fix–collisions algorithm).

Training is performed with Proximal Policy Optimization
(PPO) (Schulman et al. 2017) on an 11 × 11 maze grid for
30,000 episodes. Throughout the first 15,000 episodes, we
linearly increase the static-obstacle density from 0% to 30%
and the number of dynamic obstacles from 0 to 4.

At each time step t, we compute the discounted return

Rt =

T−t∑
l=0

γl rt+l,

and the advantage estimate using Generalized Advantage
Estimation (GAE) (Schulman et al. 2015b):

At = Rt − Vθ(st),

where γ = 0.95 and Vθ(st) is the value function.
The PPO surrogate objective is

LPPO(θ) = −Et

[
min

(
rtAt, clip(rt, 1− ε, 1 + ε)At

)]
+cv Et

[(
Vθ(st)−Rt

)2]− ce Et

[
H
(
πθ(· | st)

)]
,

Table 2: Related Literature Categorization into – S1: Agent Planning; S2: Collision Detection; S3: Collision avoidance policy;
S4: Agent Replanning (SB: Search Based; LB: Learning Based)

Method S1 S2 S3 S4
Our* Decentralized Centralized Centralized Decentralized

(SB) CBS Decentralized Centralized Centralized Centralized

(SB) LNS Centralized Centralized Centralized Centralized

(LB) PRI-
MAL &
PRIMAL-2

Distributed Distributed Distributed Distributed

(LB)
SCRIMP

Distributed Distributed Distributed Distributed

(LB) Learn to
Follow

Decentralized Decentralized Decentralized Decentralized

(LB)
LNS2+RL

Centralized Centralized Hybrid Hybrid

where rt = πθ(at|st)
πθold

(at|st) , ε = 0.2, cv = 0.5, and ce are lin-
early annealed from 0.05 down to 0.01 over the first 5,000
episodes. PPO inherits many of the stability guarantees of
trust-region methods (Schulman et al. 2015a).

To encourage the agent to distinguish valid from invalid
moves, we add a binary cross-entropy loss

Lvalid(θ) = Et

[
BCE

(
zt,mt

)]
,

where zt ∈ R|A| are the network logits, mt ∈ {0, 1}|A| is
the action-validity mask, and

BCE(z,m) = −
|A|∑
i=1

[
mi log σ(zi)+(1−mi) log

(
1−σ(zi)

)]
.

The full objective is
L(θ) = LPPO(θ) + λvalid Lvalid(θ),

where λvalid is chosen empirically. During both training and
inference, we sample only actions flagged as valid by mt,
which accelerates convergence and improves safety.

After training, the policy πθ is used in stage S1 to generate
initial trajectories and in stage S4 to replan whenever the
centralized collision detector (stage S2) issues an alert.

Neural Network Architecture

ResNetDQN Network Architecture for DDQN Training
ResNetDQN is a residual-network architecture for approxi-
mating the action-value function Qπ(s, a) in grid-based en-
vironments trained using the DDQN algorithm (Van Hasselt,
Guez, and Silver 2016). It combines a deep convolutional
stem with residual blocks (He et al. 2016), early fusion of
low-dimensional features, hierarchical downsampling, and a
late-fusion MLP to output one Q-value per action.

Network Overview
1. Input: (B, 6, H,W) tensor comprising four binary

masks (obstacle, agent, goal, dynamic) plus normalized
x- and y-coordinate channels, and a (B, 3) low-dim vec-
tor of {direction, distance}.

2. Conv Stem & Residual Blocks: 3× 3 conv (6→32 chan-
nels, stride=1, pad=1) + BatchNorm + ReLU, then two
ResidualBlock(32→32) with dilation rates 1 and 2.

3. Early Fusion: Project low-dim (3→16), tile to
(B, 16, H,W), concat with conv features → 48
channels, then 3 × 3 conv (48→32) + BatchNorm +
ReLU.

4. Downsampling Stage 1: 3 × 3 conv (32→64, stride=2,
pad=1) + BatchNorm + ReLU, followed by two
ResidualBlock(64→64) with dilation rates 2 and 4.

5. Downsampling Stage 2: 3× 3 conv (64→128, stride=2,
pad=1) + BatchNorm + ReLU, followed by two
ResidualBlock(128→128) with dilation rates 4
and 1.

6. Global Pooling & Late Fusion: AdaptiveAvgPool2d →
128-dim vector u. In parallel, map low-dim→256, map
u → 256, concat →512 →256 via FC + ReLU.

7. Output: Linear layer (256→|A|) produces Q-values.
8. Initialization: All conv and linear weights: Xavier-

uniform; all biases: zero.
Implementation and Packages

• torch, torch.nn, torch.nn.functional: de-
fine modules, layers, activations.

• AdaptiveAvgPool2d, BatchNorm2d, Conv2d,
Linear: core building blocks.

ResNet-based Actor–Critic Architecture for PPO Train-
ing The PPOActorCritic model shares the same ResNet
encoder as ResNetDQN (conv stem, residual blocks, fusion,
downsampling, pooling) (He et al. 2016), producing a 256-
dim embedding. It splits into two GRU-based heads for pol-
icy (actor) and value (critic), trained via PPO (Schulman
et al. 2017).

Network Overview
1. Shared Encoder: Follows Steps 1–4 from ResNetDQN,

yielding a 256-dim hidden hshared.

2. Actor Head: GRUCell(256→256) updates hidden state
hπ
t ; Linear(256→|A|) produces action logits.

3. Critic Head: GRUCell(256→256) updates hidden state
hV
t ; Linear(256→1) produces scalar state-value esti-

mate.
4. Initialization: Same Xavier-uniform for all weights, zero

biases.
Implementation and Packages

• torch, torch.nn, torch.nn.functional: de-
fine encoder, GRUs, heads.

• GRUCell, Linear: recurrent and output modules.

Figure 2: The plot illustrates the training performance of the
Double Deep Q-Network (DDQN) algorithm. Episode re-
wards (red), sample efficiency measured by rewards per total
frames (purple), training loss (blue), and episode length (or-
ange) are presented across episodes. Smoothed curves repre-
sent moving averages, enhancing the visibility of underlying
performance trends.

Figure 3: The plot illustrates the training performance of the
Proximal Policy Optimization (PPO) algorithm, capturing
episode rewards (red). Episode rewards (red), sample effi-
ciency measured by rewards per total frames (purple), train-
ing loss (blue), and episode length (orange) are presented
across episodes. Smoothed curves represent moving aver-
ages, enhancing the visibility of underlying performance
trends.

Training Results

Model Comparison

A.4 Additional Experiments
We present a model comparison trained using DDQN and
PPO reinforcement learning algorithms, Table 3, in Section
A.3. This section details further empirical evaluations and
an ablation study of our framework.

An ablation study of different agent selection policies is
detailed in Table 4. We have considered the information
sharing setting/replanning strategy as Static & Dynamic Ob-
stacle Replanning.

Furthermore, a comparison of replanning settings for
static and dynamic obstacles is provided in Table 5, which
reflects different information sharing settings as detailed in
our main paper. Here, we considered the agent selection pol-
icy as Fewest Future Collisions (FFC).

We also present extended analyses on MovingAI lab’s
MAPF benchmark dataset (Stern et al. 2019b) – random map
32× 32− 10 environment with various agent counts [8, 16,
32, 64, 96], results presented in Section A.4.

Agent Selection Policy Comparison

Table 3: Performance comparison of reinforcement learning methods (BFS-DQN, BFS-PPO, A*-DQN, A*-PPO) across differ-
ent grid environments and agent counts. Results are averaged over 10 problem instances per configuration. Evaluated metrics
include Success Rate (SR), Makespan (MS), Collisions (CO), and Time (T), with the Time metric averaged over all trials.
Shows that the model trained using DDQN, selected for our main paper, yields better results over PPO model.

(a) 11x11 maze grid, ∼45% static obstacles (5–20 agents). Time in seconds.

SR (↑) MS (↓) CO (↓) T (s) (↓)

Methods 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20

BFS-DDQN 100.00% 100.00% 98.00% 17.8 23.6 27.4 9 53 191 1.1 4.2 11.8
BFS-PPO 100.00% 94.00% 74.00% 22.1 28.6 28.6 9 48 125 4.9 16.5 31.8
A*-DDQN 100.00% 96.00% 82.00% 16.1 20.7 24.0 10 59 173 3.3 12.0 25.8
A*-PPO 100.00% 96.00% 74.00% 16.6 21.4 25.2 10 60 171 3.9 14.4 30.4

(b) 21x21 maze grid, ∼35% static obstacles (32, 64, and 96 agents). Time in minutes.

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

BFS-DDQN 100.00% 90.00% 0.00% 86.6 131.4 - 528 18909 - 2.7 23.9 33.5
BFS-PPO 100.00% 0.00% 0.00% 87.6 - - 463 - - 11.2 30.2 31.1
A*-DDQN 100.00% 80.00% 0.00% 41.4 72.0 - 457 11379 - 3.3 23.5 33.4
A*-PPO 100.00% 0.00% 0.00% 39.6 78.3 - 407 10761 - 6.2 27.0 30.2

(c) 25x25 warehouse grid, ∼24% static obstacles (32, 64, and 96 agents). Time in minutes.

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

BFS-DDQN 100.00% 100.00% 10.00% 94.3 125.9 96.0 237 6379 26553 5.2 28.0 59.5
BFS-PPO 100.00% 40.00% 0.00% 93.6 130.0 - 231 3740 - 15.2 57.3 60.2
A*-DDQN 100.00% 100.00% 60.00% 40.5 43.7 50.8 211 3129 16277 4.7 19.2 51.8
A*-PPO 100.00% 100.00% 40.00% 41.6 42.4 51.5 179 3117 17382 5.7 30.0 55.4

Table 4: Performance comparison of Agent Selection Policies (Random, Farthest, Fewest Future Collisions - FFC) for Alert-
BFS and Alert-A* methods across different grid environments and agent counts. Metrics include Success Rate (SR), Makespan
(MS), Collisions (CO), and Time (T). Results are averaged over 10 problem instances per configuration. Best performance
across policies for each method and agent group is bolded. Using Static & Dynamic obstacle replanning. Shows that, among
the choices [random, farthest fewest future collisions (FFC)], the FFC policy, selected for our main paper, yields best results
across the different map configurations.

(a) 11x11 maze, ∼45% static obstacles (5–20 agents). Time in seconds (s).

SR (↑) MS (↓) CO (↓) T (s) (↓)

Methods 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20

Policy: Random Agent Selection

Alert-BFS 98.33% 98.00% 82.00% 20.5 24.6 32.7 20 108 517 2.0 5.8 22.6
Alert-A* 98.33% 96.00% 50.00% 17.8 23.6 24.3 16 122 259 4.3 15.7 35.6

Policy: Farthest Agent Selection

Alert-BFS 100.00% 94.00% 90.00% 19.8 24.6 30.3 14 91 387 1.2 6.9 17.8
Alert-A* 98.33% 84.00% 62.00% 18.9 23.3 26.5 14 96 224 4.6 18.3 35.1

Policy: Fewest Future Collisions (FFC)

Alert-BFS 100.00% 100.00% 98.00% 17.8 23.6 27.4 9 53 191 1.1 4.2 11.8
Alert-A* 100.00% 96.00% 82.00% 16.1 20.7 24.0 10 59 173 3.3 12.0 25.8

(b) 21x21 maze grid, ∼35% static obstacles (32, 64, and 96 agents). Time in minutes (min).

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

Policy: Random Agent Selection

Alert-BFS 100.00% 0.00% 0.00% 99.2 - - 1670 - - 4.1 30.1 30.4
Alert-A* 100.00% 0.00% 0.00% 48.8 - - 931 - - 6.1 30.2 30.2

Policy: Farthest Agent Selection

Alert-BFS 100.00% 0.00% 0.00% 93.5 - - 1216 - - 3.1 30.2 30.2
Alert-A* 100.00% 10.00% 0.00% 47.5 64.0 - 697 14654 - 5.3 29.8 30.3

Policy: Fewest Future Collisions (FFC)

Alert-BFS 100.00% 90.00% 0.00% 86.6 131.4 - 528 18909 - 2.7 23.9 30.5
Alert-A* 100.00% 80.00% 0.00% 41.4 72.0 - 457 11379 - 3.3 23.5 30.4

(c) 25x25 warehouse grid, ∼24% static obstacles (32, 64, and 96 agents). Time in minutes (min).

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

Policy: Random Agent Selection

Alert-BFS 100.00% 20.00% 0.00% 119.0 139.0 - 722 23853 - 12.4 57.9 60.1
Alert-A* 100.00% 100.00% 0.00% 42.4 54.6 - 302 5788 - 6.0 37.9 60.1

Policy: Farthest Agent Selection

Alert-BFS 100.00% 60.00% 0.00% 83.4 126.0 - 455 9836 - 8.5 47.6 60.8
Alert-A* 100.00% 100.00% 0.00% 45.0 59.4 - 268 4644 - 6.4 34.9 60.1

Policy: Fewest Future Collisions (FFC)

Alert-BFS 100.00% 100.00% 10.00% 94.3 125.9 96.0 237 6379 26553 5.2 28.0 59.5
Alert-A* 100.00% 100.00% 60.00% 40.5 43.7 50.8 211 3129 16277 4.7 19.2 51.8

Inter-agent Information Sharing Comparison Map Configuration: 32× 32− 10 Random Map
The random map 32× 32− 10 is obtained from the Moving AI Lab’s MAPF
benchmark dataset (Stern et al. 2019b). Agent configurations tested include
scenarios with 8, 16, 32, 64, and 96 agents. Each configuration was tested
across 10 different problem instances (unique start and goal locations for all
agents). The detailed performance metrics, including success rates, makespan,
collisions, and computation time, are presented in Table 6.

Benchmark Dataset Evaluation

Table 5: Comparison of replanning settings (Only Static, Only Dynamic, Static & Dynamic Obstacles) for Alert-BFS and
Alert-A* methods across different grid environments and agent counts. Metrics include Success Rate (SR), Makespan (MS),
Collisions (CO), and Time (T). Results are averaged over 10 problem instances per configuration. Best performance across
settings for each method and agent group is bolded. Using FFC agent selection policy. Shows that, among the replanning
strategies, Static + Dynamic obstacle replanning strategy (selected for our main paper), yields best results across the different
map configurations.

(a) 11x11 maze grid, ∼45% static obstacles (5–20 agents). Time in seconds (s).

SR (↑) MS (↓) CO (↓) T (s) (↓)

Methods 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20 5-10 11-15 16-20

Setting 1: Only Static Obstacle Replanning (No inter-agent information)

Alert-BFS 95.00% 92.00% 84.00% 17.5 23.0 25.4 8 51 205 1.4 4.6 14.2
Alert-A* 95.00% 90.00% 78.00% 15.6 20.3 23.7 8 55 177 3.2 11.6 26.0

Setting 2: Only Dynamic Obstacle Replanning

Alert-BFS 63.33% 24.00% 8.00% 19.3 21.0 26.8 16 89 171 4.9 17.9 34.7
Alert-A* 50.00% 12.00% 2.00% 14.0 13.8 15.0 6 25 49 22.9 41.4 52.1

Setting 3: Static & Dynamic Obstacle Replanning

Alert-BFS 100.00% 100.00% 98.00% 17.8 23.6 27.4 9 53 191 1.1 4.2 11.8
Alert-A* 100.00% 96.00% 82.00% 16.1 20.7 24.0 10 59 173 3.3 12.0 25.8

(b) 21x21 maze grid, ∼35% static obstacles (32, 64, and 96 agents). Time in minutes (min).

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

Setting 1: Only Static Obstacle Replanning (No inter-agent information)

Alert-BFS 100.00% 10.00% 0.00% 86.6 140.0 - 528 12476 - 5.8 30.0 30.0
Alert-A* 100.00% 20.00% 0.00% 41.4 59.0 - 457 9310 - 6.7 30.0 30.0

Setting 2: Only Dynamic Obstacle Replanning

Alert-BFS 0.00% 0.00% 0.00% - - - - - - 30.0 30.0 30.0
Alert-A* 0.00% 0.00% 0.00% - - - - - - 30.0 30.0 30.0

Setting 3: Static & Dynamic Obstacle Replanning

Alert-BFS 100.00% 90.00% 0.00% 86.6 131.4 - 528 18909 - 2.7 23.9 30.0
Alert-A* 100.00% 80.00% 0.00% 41.4 72.0 - 457 11379 - 3.3 23.5 30.0

(c) 25x25 warehouse grid, ∼24% static obstacles (32, 64, and 96 agents). Time in minutes (min).

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 32 64 96 32 64 96 32 64 96 32 64 96

Setting 1: Only Static Obstacle Replanning (No inter-agent information)

Alert-BFS 100.00% 100.00% 0.00% 95.8 117.4 - 230 6097 - 10.0 40.0 60.2
Alert-A* 100.00% 100.00% 60.00% 42.2 41.6 56.0 204 3258 16694 8.9 32.3 53.3

Setting 2: Only Dynamic Obstacle Replanning

Alert-BFS 0.00% 0.00% 0.00% - - - - - - 61.7 62.4 60.6
Alert-A* 0.00% 0.00% 0.00% - - - - - - 58.6 61.6 61.8

Setting 3: Static & Dynamic Obstacle Replanning

Alert-BFS 100.00% 100.00% 10.00% 94.3 125.9 96.0 237 6379 26553 5.2 28.0 59.5
Alert-A* 100.00% 100.00% 60.00% 40.5 43.7 50.8 211 3129 16277 4.7 19.2 51.8

Table 6: Comparison of performance metrics for different methods on a 32×32 random map. Results are averaged over 10 problem instances
per configuration and presented in two subtables based on agent counts. Key metrics include Success Rate (SR), Makespan (MS), Collisions
(CO), and Time (T(min)), with Time averaged over all trials. For learning-based methods like PRIMAL and SCRIMP, the average steps taken
(episode length) are presented in brackets along with average wall-clock time taken. For learning based methods, the environment step limit
is set to 512. Best performing values for each metric per agent count are highlighted in bold.

(a) 32x32 random map (8, 16, and 32 agents). The time limit per problem instance is 1 hour. For learning based methods, the environment
step limit is set to 512.

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 8 16 32 8 16 32 8 16 32 8 16 32

Alert-BFS 100.00% 100.00% 100.00% 62.5 76.2 104.9 2 9 64 0.2 0.6 2.4
Alert-A* 100.00% 100.00% 100.00% 42.7 45.5 48.1 2 8 68 0.2 0.9 2.5
CBS 100.00% 100.00% 90.00% 40.2 43.6 47.0 1 6 35079 0.01 0.01 13.0
ICBS 100.00% 100.00% 90.00% 40.2 43.6 47.0 1 6 15438 0.01 0.01 10.7
PRIMAL 0.00% 0.00% 0.00% - - - - - - 0.1 (512) 0.3 (512) 1.0 (512)
SCRIMP 100.00% 100.00% 100.00% 39.4 43.3 47.7 0 0 0 0.01 (39) 0.01 (43) 0.03 (48)

(b) 32x32 random map (64 and 96 agents). The time limit per problem instance is 1 hour. For learning based methods, the environment step
limit is set to 512.

SR (↑) MS (↓) CO (↓) T (min) (↓)

Methods 64 96 64 96 64 96 64 96

Alert-BFS 100.00% 100.00% 136.5 154.4 1194 7079 12.9 33.8
Alert-A* 100.00% 100.00% 53.2 52.0 1158 5912 13.2 30.7
CBS 0.00% 0.00% - - - - 60.1 60.1
ICBS 0.00% 0.00% - - - - 60.3 60.2
PRIMAL 0.00% 0.00% - - - - 3.6 (512) 8.4 (512)
SCRIMP 100.00% 90.00% 52.1 55.8 2 3 0.2 (52) 0.5 (101)

