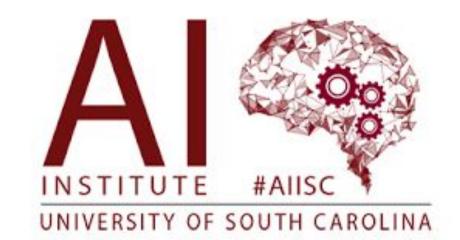
An empirical study on the use of Large Language Models (LLMs) to translate recipes into a semi-structured data format

Vansh Nagpal¹, Siva Likitha Valluru¹, Biplav Srivastava¹ ¹University of South Carolina, Computer Science and Engineering, Al 4 Society Group



R3 Attributes

Recipe Name

Ingredients (IG)

Preparation Time, Cook Time,

Instructions (I

Quantity (Q)

Alternative

Quality Characteristi

Information Source

Recipe QA dataset

Recipe QA dataset

Allergen Lexicon

Funders: University of South Carolina, South Carolina Honors College, SCRA

Introduction – Recipe Translation

Background:

 Previous works have introduced the Rich Recipe Representation(R3) to synthesize recipe information Converting recipes from plain text to R3 is a tedious process and involves a human to ensure correctness and completeness of the translation

Objective:

 Build novel methods to automate the conversion of recipes from plain text to R3 using a combination of rule-based and Large Language Model (LLM)-based approaches

Significance:

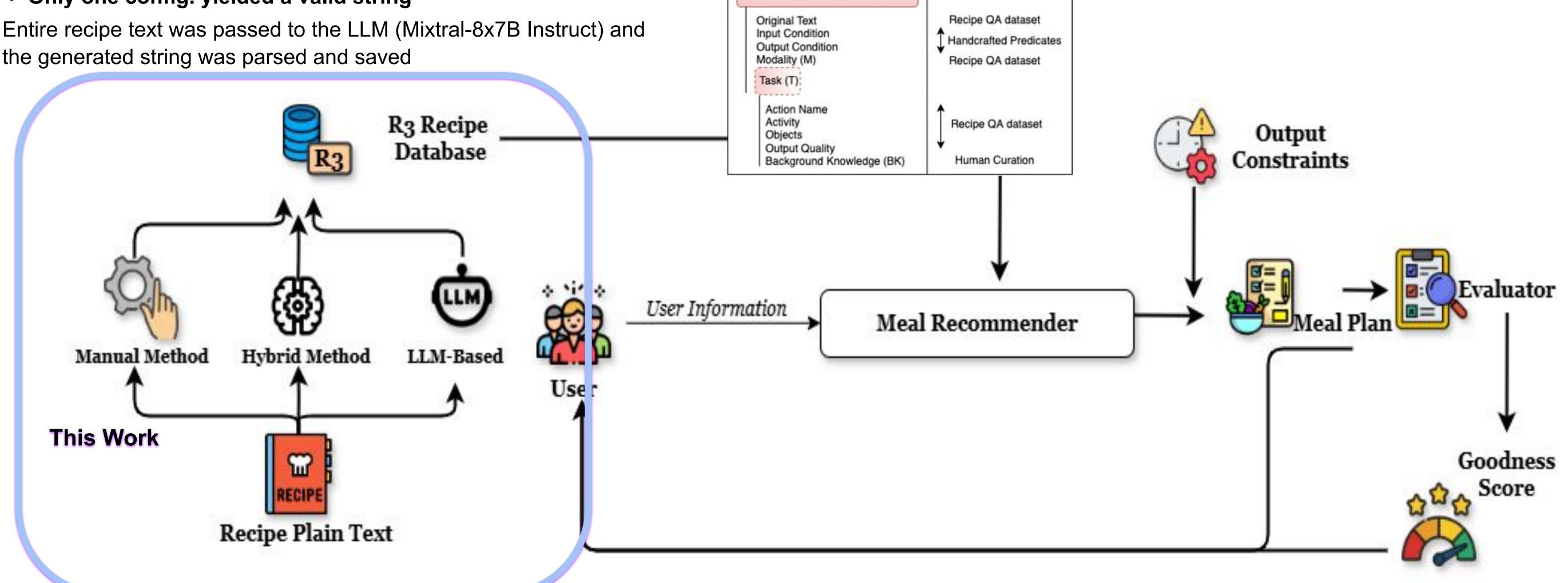
- Aids in providing personalized meal recommendations
- Solves unstructured language to domain-specific language problem

Findings

Metric	Definition				
JSON Error Counts	Assesses number of errors(missing commas, extra braces,) in the R3 representation	Config	JSON Error Counts	Syntactic Similarity	Semantic
	Assesses the JSON structure of the R3 representation to	RC0	0	0.584	0.763
	see if necessary tags are present	RC1	0	0.778	0.733
Semanti c Similarity	Assesses if semantic information (meaning) is preserved	RC2	26	0.376	0.758

Approach and System Overview

- RC0 (Fully manual): 25 egg-based recipes were converted manually to R3 representation
- RC1 (Hybrid LLM-based): Ingredients and Instructions were extracted separately using Chain of Thought (CoT) prompting with GPT-3 and GPT-4o and manually collated into R3 format
- RC2 (Automatic LLM-based):
- experiments were carried out to determine optimal configuration (n-shot prompting, atomicity of example, temperature) -> Only one config. yielded a valid string
- Entire recipe text was passed to the LLM (Mixtral-8x7B Instruct) and



A complete overview of our Meal Recommendation work

Discussion

- Results show that RC0 achieves the highest semantic accuracy but a lower syntactic score due to fewer JSON keys.
- RC1 introduced extra JSON keys in the R3s, thereby inflating syntactic scores.
- RC2 proved infeasible as LLMs frequently produced invalid JSONs with multiple errors.
- Future Work:
 - Making RC2 more robust by refining prompting strategies and rule-based post-processing
 - Experimenting with larger LLMs with more parameters and larger context lengths

Resources

Resources

Translated Recipe Data:

- Checkout the resulting recipes from our recipe translation efforts here Group Recommendation Effort:
- Checkout information about our broader group recommendation (including recommendation) effort here

Papers:

- Nagpal, Vansh, et al. "BEACON: Balancing Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes." arXiv preprint arXiv:2406.13714 (2024).
- Nagpal, Vansh, et al. "A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON." arXiv preprint arXiv:2412.17910 (2024).

An empirical study on the use of Large Language Models (LLMs) to translate recipes into a semi-structured data format

Vansh Nagpal¹, Siva Likitha Valluru¹, Biplav Srivastava¹

¹University of South Carolina, Computer Science and Engineering, AI 4 Society Group

Funders: University of South Carolina, South Carolina Honors College, SCRA

Introduction – Recipe Translation

Background:

• Previous works have introduced the *Rich Recipe Representation*(*R3*) to synthesize recipe information Converting recipes from plain text to *R3* is a tedious process and involves a human to ensure correctness and completeness of the translation

Objective:

 Build novel methods to automate the conversion of recipes from plain text to R3 using a combination of rule-based and Large Language Model (LLM)-based approaches

Significance:

- Aids in providing personalized meal recommendations
- Solves unstructured language to domain-specific language problem

Methodology & Experimental Design

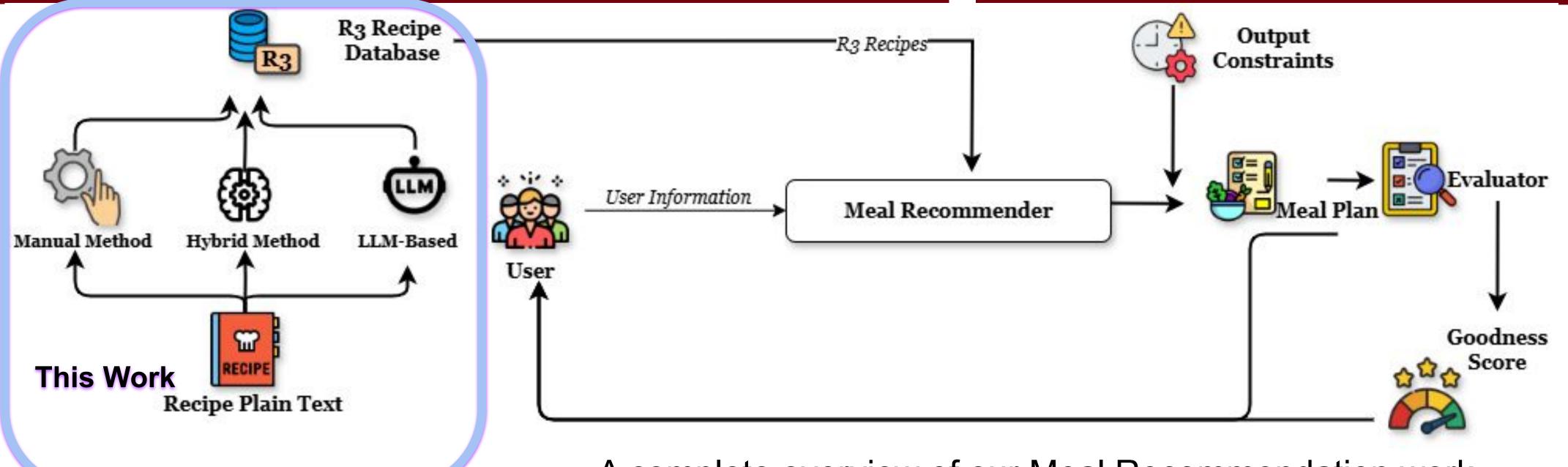
Implementation: We consider the following methods and metrics to evaluate the quality of R3 representations

- RC0 (Fully manual): 25 egg-based recipes were converted manually to **R3** representation
- RC1 (Hybrid LLM-based): Ingredients and Instructions were extracted separately using Chain of Thought (CoT) prompting with GPT-3 and GPT-4o and manually collated into R3 format
- RC2 (Automatic LLM-based):
- Initial experiments were carried out to determine optimal configuration (n-shot prompting, atomicity of example, temperature) -> Only one config. yielded a valid string
- Entire recipe text was passed to the LLM (Mixtral-8x7B Instruct)
 and the generated string was parsed and saved

Metric	Definition
JSON Error Counts	Assesses number of errors(missing commas, extra braces,) in the R3 representation
Syntactic Similarity	Assesses the JSON structure of the R3 representation to see if necessary tags are present
Semantic Similarity	Assesses if semantic information (meaning) is preserved

System Overview

Results



complete eventions of our Mool Decomposedation		
_ / `/ \{ f \ f \ / \ / \ / \ / \ f \ / \ / \ / \ / \ / \ / \ / \	an wark	
complete overview of our Meal Recommendation	JII WUIK	

Config	JSON Error Counts	Syntactic Similarity	Semantic Similarity
RC0	0	0.584	0.763
RC1	0	0.778	0.733
RC2	26	0.376	0.758

Comparison of three R3 translation methods

Discussion and Future Work

Discussion:

- Results show that RC0 achieves the highest semantic accuracy but a lower syntactic score due to fewer JSON keys.
- RC1 introduced extra JSON keys in the R3s, thereby inflating syntactic scores.
- RC2 proved infeasible as LLMs frequently produced invalid JSONs with multiple errors.
- Future Work:
 - Making RC2 more robust by refining prompting strategies and rule-based post-processing
 - Experimenting with larger LLMs with more parameters and larger context lengths

Resources

Translated Recipe Data:

- Checkout the resulting recipes from our recipe translation efforts here Group Recommendation Effort:
- Checkout information about our broader group recommendation (including meal recommendation) effort here

Related preprints:

- Nagpal, Vansh, et al. "BEACON: Balancing Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes." arXiv preprint arXiv:2406.13714 (2024).
- Nagpal, Vansh, et al. "A Novel Approach to Balance Convenience and Nutrition in Meals With Long-Term Group Recommendations and Reasoning on Multimodal Recipes and its Implementation in BEACON." arXiv preprint arXiv:2412.17910 (2024).

nttps://github.com/vnagpal25/BEACON/tree/main/items_dat

https://ai4society.github.io/projects/group_rec/index.htm