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Introduction — Recipe Translation Approach and System Overview
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Resources
Translated Recipe Data:

e Checkout the resulting recipes from our recipe translation efforts here

e Results show that RCO achieves the highest semantic accuracy but a lower syntactic Group Recommendation Effort:
score due to fewer JSON keys. e Checkout Iinformation about our broader group recommendation (including meal

e RC1 introduced extra JSON keys in the R3s, thereby inflating syntactic scores. recommendation) effort here
e RC2 proved infeasible as LLMs frequently produced invalid JSONs with multiple errors.
e Future Work: Papers:

o Making RC2 more robust by refining prompting strategies and rule-based ® Nagpal, Vansh, et al. "BEACON: Balancing Convenience and Nutrition in Meals With

post-processing Long-Term Group Recommendations and Reasoning on Multimodal Recipes.” arXiv
o Experimenting with larger LLMs with more parameters and larger context lengths preprint arXiv:2406.13714 (2024).

® Nagpal, Vansh, et al. "A Novel Approach to Balance Convenience and Nutrition in
Meals With Long-Term Group Recommendations and Reasoning on Multimodal
Recipes and its Implementation in BEACON." arXiv preprint arXiv:2412.17910 (2024).

https://ai4society.github.io/projects/group rec/index.html
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Introduction — Recipe Translation Methodology & Experimental Design

BaCkg_round: _ _ _ Implementation: \We consider the following methods and metrics to evaluate the quality of R3 representations
e Previous works have introduced the Rich Recipe |
Representation(R3) to synthesize recipe information © RCO (Fully manual): 25 .egg-based recipes were converted Metric Definition
Converting recipes from plain text to R3 is a tedious  mManually to R3 representation 1SON E A or of —
process and involves a human to ensure correctness and © RC1 (Hybrid LLM-based): Ingredients and Instructions were ror | Assesses number of errors(missing commas,
Counts extra braces, ...) in the R3 representation
completeness of the translation extracted separately using Chain of Thought (CoT) prompting
Objective: with GPT-3 and GPT-40 and manually collated into R3 format
e Build novel methods to automate the conversion of recipes ©® RCZ2 (Automatic LLM-based): Syntactic | Assesses the JSON structure of the R3
from plain text to R3 using a combination of rule-based and ~ © Initial experiments were carried out to determine optimal Similarity  |representation to see if necessary tags are
Large Language Model (LLM)-based approaches configuration (n-shot prompting, atomicity of example, present
Significance: temperature) -> Only one config. yielded a valid string Semantic |Assesses if semantic information (meaning)
e Aids in providing personalized meal recommendations o Entire recipe text was passed to the LLM (Mixtral-8x7B Instruct) Similarity  |is preserved
e Solves unstructured language to domain-specific language and the generated string was parsed and saved
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Discussion and Future Work

Discussion:
e Results show that RCO achieves the highest semantic accuracy but a lower
syntactic score due to fewer JSON keys.
e RC1 introduced extra JSON keys in the R3s, thereby inflating syntactic scores.
e RCZ2 proved infeasible as LLMs frequently produced invalid JSONs with multiple
errors.
e Future Work:
o Making RC2 more robust by refining prompting strategies and rule-based
post-processing
o Experimenting with larger LLMs with more parameters and larger context
lengths

Resources

Translated Recipe Data:

e Checkout the resulting recipes from our recipe translation efforts here

Group Recommendation Effort:

e Checkout Information about our broader group recommendation
(including meal recommendation) effort here
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