
Solving the Rubik’s Cube with a PDDL Planner

Bharath Muppasani, Vishal Pallagani, Kausik Lakkaraju,
Biplav Srivastava, Forest Agostinelli

AI Institute, University of South Carolina, Columbia, South Carolina, USA
{bharath@email., vishalp@email., kausik@email., biplav.s@, foresta@cse.}sc.edu

Abstract
Rubik’s Cube (RC) is a popular puzzle that is also1

computationally hard to solve. In this demonstra-2

tion, we introduce the first PDDL formulation for3

the 3-dimensional RC and solve it with an off-the-4

shelf Fast-Downward planner. We also create a5

plan executor and visualizer to show how the plan6

achieves the intended goal. Our system has types7

of two audiences: (a) planning researchers who can8

explore a hard problem and improve their planning9

algorithms, and (b) RC learners who want to learn10

how to solve the puzzle at their own pace and can11

now modify an initial plan (e.g., manually, using12

other algorithms) and see their execution.13

1 Introduction14

As artificial intelligence (AI) continues to solve problems that15

humans struggle to solve, there is an emerging need for hu-16

mans to understand these solutions so that we can trust AI,17

create new educational opportunities, and even discover new18

knowledge. Many of these problems are path-finding prob-19

lems. That is, the problem is to find a sequence of actions20

(a path) to go from any given state to a goal state. AI has21

been successfully applied to solve the Rubik’s Cube (RC)22

[Agostinelli et al., 2019; Lakkaraju et al., 2022; Joyner, 2008;23

Agostinelli et al., 2021] but these methods used opaque learn-24

ing techniques which are hard for RC learners to benefit from.25

While no PDDL encoding of a 3x3x3 RC problem is26

known to the authors, there is previous work1 for a 2x2x2 RC27

setting and is solved with the Fast-Forward planner. Authors28

in [Büchner et al., 2022] modeled the RC problem in finite29

domain representation, which enables the common general30

purpose solvers to be used on the RC problem. Our contri-31

butions are: (a) introducing the first PDDL formulation for32

a 3-size RC; planning researchers can use it to evaluate their33

planning algorithms, (b) enabling RC learners to use off-the-34

shelf planners to find custom and optimized way to solve35

any given RC configuration. Moreover, learning based RC36

solvers, which have been shown to scale to large instances,37

can use it as a labeled data generator for training. A demon-38

stration can be seen at the url - here.39

1https://wu-kan.cn/2019/11/21/Planning-and-Uncertainty/

2 Background 40

Rubik’s Cube (RC) 41

The Rubik’s Cube is a 3-D combination puzzle with colored 42

faces made up of 26 smaller colored pieces linked to a central 43

spindle, with the goal of rotating the blocks until each face 44

of the cube is a single color. To solve the puzzle, one can 45

perform certain actions that correspond to the different faces 46

of the cube. The major actions of a Rubik’s cube are Up(U), 47

Down(D), Right(R), Left(L), Front(B), and Back(B), which 48

define a rotation of 90 degrees in a clockwise direction of the 49

respective face per action. The inverse of these actions corre- 50

sponds to a 90-degree rotation in the anti-clockwise direction 51

(suffix ’rev’). One can solve the RC from a scrambled state to 52

the original configuration by performing a set of above men- 53

tioned actions. 54

While sticking to planning terminology of actions, prob- 55

lems and plans, we want to clarify terminology prevalent in 56

RC literature that we will also refer to. A sequence of actions 57

are called macro-actions and a collection of macro-actions 58

are called algorithms in RC parlance. A solver may employ a 59

strategy for sequencing macro-actions to solve the cube. We 60

use the Fast-Downward AI Planner [Helmert, 2006] to solve 61

the RC problem. Fast Downward is a domain-independent 62

classical planning system based on heuristic search. 63

3 System Description 64

We now discuss how an RC can be modelled in PDDL and 65

how the generated plan is linked with a visualizer for pro- 66

viding better understanding to people coming from a non- 67

planning background as well. 68

Figure 1: Rubik’s cube description to define the domain encoding.

https://youtu.be/tp9Z0yppSJw

Listing 1: Action L of Rubik’s Cube modeled in PDDL

(: a c t i o n L
: e f f e c t (and
; f o r c o r n e r c u b e l e t s
(f o r a l l (? x ? y ? z) (when (cube1 ? x ? y ? z)

(and (cube2 ? y ? x ? z))))
(f o r a l l (? x ? y ? z) (when (cube3 ? x ? y ? z)

(and (cube1 ? y ? x ? z))))
(f o r a l l (? x ? y ? z) (when (cube4 ? x ? y ? z)

(and (cube3 ? y ? x ? z))))
(f o r a l l (? x ? y ? z) (when (cube2 ? x ? y ? z)

(and (cube4 ? y ? x ? z))))

; f o r edge c u b e l e t s
(f o r a l l (? x ? z) (when (edge13 ? x ? z)

(and (edge12 ? x ? z))))
(f o r a l l (? y ? z) (when (edge34 ? y ? z)

(and (edge13 ? y ? z))))
(f o r a l l (? x ? z) (when (edge24 ? x ? z)

(and (edge34 ? x ? z))))
(f o r a l l (? y ? z) (when (edge12 ? y ? z)

(and (edge24 ? y ? z))))))

RC representation in PDDL: In the PDDL domain, the Ru-69

bik’s cube problem environment has been defined by assum-70

ing the cube pieces are in a fixed position, and are named ac-71

cordingly, as defined in Figure 1. Each action in the RC envi-72

ronment is defined as the change of colors on these fixed cube73

pieces. The 3D axis of the cube is considered as three separate74

parameters X, Y, and Z that specify the position of the color75

on the cube’s pieces. The three-color cubelet is specified as a76

predicate with three parameters: X, Y, and Z, which indicate77

the piece’s colors on three separate axes. The two-color edge78

piece between the cubelets is specified as a predicate with79

two parameters denoting the piece’s colors on the two axes.80

The predicate names define the fixed position of the cubelets81

and edge pieces that are defined with respect to the different82

faces of the cube. The representation considered for the cube83

positions is shown in the Figure 1. One of the actions, ac-84

tion ‘L’, of RC designed in PDDL of Rubik’s cube from the85

description provided have been shown in Listing 1.86

The PDDL for RC is modelled by considering the moves87

in the RC domain as change of colors on the cube pieces.88

When the move L is applied to the RC, for example, the left89

layer is rotated clockwise with respect to the left face. This90

may be regarded as a clockwise translation of colors from91

the left layer’s cubelet and edge pieces. When the action L92

is performed on Figure 1, the colors on the pieces: cube1,93

cube2, cube4, cube3, are circularly shifted towards bottom.94

The same applies for the edge pieces. The change of color95

axis on these pieces is also handled accordingly.96

Generating and Visualizing the Plan: Our system’s PDDL97

encoded RC solver, in combination with a Visualizer, gen-98

erates plan actions to solve the problem using the Fast-99

Downward (FD) AI planner. We have used publicly available100

Figure 2: Shuffled state of the cube. Solution found with FD plan-
ner: U, L. Cost: 2.

three-rubiks-cube npm package 2 for 3D RC visualization. A 101

random scrambled state of RC represented in the Visualizer is 102

shown in the Figure 2. AI planners are controllable in gener- 103

ating the desired plans. We can specify the search algorithm 104

and the heuristics to the Fast-Downward planner. Each dif- 105

ferent search algorithm generates different plans to reach the 106

goal state. We employed A* search algorithm in combination 107

with different heuristics which supports conditional-effects in 108

our system and gives plans in minutes. 109

The system architecture is shown in Figure 3. The users 110

need to upload the domain file and the problem file of RC and 111

select a heuristic of their choice from the dropdown menu. 112

The uploaded domain file and problem file along with the se- 113

lected heuristic are sent to the API endpoint. The RC visual- 114

izer is scrambled to match the initial state from the uploaded 115

problem file. On the back end, the Fast-Downward Planner 116

with A* search along with the selected heuristic evaluates the 117

uploaded problem and generates a solution. This solution is 118

provided to the visualizer to solve the RC. The user may vi- 119

sually follow the actions in the plan file generated to observe 120

the RC being solved step by step. Additional information on 121

the parameters of search time, total time, evaluated states, ex- 122

panded states, and generated states are also displayed in the 123

front end. 124

4 Heuristic Evaluation 125

In our RC solver system, we have incorporated the Fast- 126

Downward AI planner, which offers a range of heuristic im- 127

plementations for efficient planning. As our RC PDDL em- 128

ploys conditional effects, we have selected a subset of heuris- 129

tics that support conditional effects in domain modeling. A 130

short description of these heuristics is provided below: 131

Blind heuristic is based on the idea that the search algo- 132

rithm doesn’t have any knowledge about the problem domain. 133

It estimates the distance to the goal based on the number of 134

actions needed to reach it, without considering their effects. 135

Max heuristic estimates the maximum cost of achiev- 136

ing any one of the goals, without considering their inter- 137

dependencies. 138

Goal Count heuristic calculates the number of unsatisfied 139

goals in the current state and estimates the cost of satisfying 140

all of them. It works best when there is a small number of 141

goals. 142

Landmark Cost Partitioning heuristic is based on the idea 143

of breaking down the planning problem into smaller sub- 144

problems, then solving them separately. It uses a technique 145

2https://github.com/lab89/three-rubiks-cube

https://github.com/lab89/three-rubiks-cube

User

domain.pddl
problem.pddl

heuristic

problem.pddl

Based on the problem description,
the scrambled state of cube is

displayed on the website

User upload domain and problem
file alongwith the selected heuristic

is sent to the API endpoint

User Interface

plan

The UI shows a step-by-step
action sequence to solve the

given scrambled state and also
gives additional parameters for

the chosen heuristic

Figure 3: System Architecture.

called cost partitioning to distribute the estimated cost of146

achieving the goal among these sub-problems. [Karpas and147

Domshlak, 2009]148

FF heuristic is based on a simple idea: to achieve a goal,149

find the shortest sequence of actions that lead to it. FF (Fast150

Forward) planner does a forward search from the initial state151

to the goal state. [Hoffmann, 2001]152

Causal Graph heuristic constructs a graph representing the153

causal relationships between actions and the effects they have154

on the state. It estimates the cost of achieving the goal based155

on this graph. [Helmert, 2004]156

Context-Enhanced Additive heuristic combines several157

sub-heuristics that take into account different aspects of the158

problem domain. It estimates the cost of achieving the goal159

by adding up the costs of these sub-heuristics and weighting160

them based on their relevance to the current state. [Helmert161

and Geffner, 2008]162

In Table 1, we show the performance of these heuristics on163

two RC problems (P1 & P2) which are 7 & 8 moves away164

from the goal state respectively. Here we compare the heuris-165

tics across time and plan cost metrics. Apart from these met-166

rics, we also display additional parameters, like the number167

of states generated before the solution is found, on our web-168

site (as shown in Figure 3). It can be seen that the context-169

enhanced additive heuristic is worst performing across these170

metrics for both the problems (P1 & P2).171

5 Conclusion172

In this work, we have demonstrated the capability of a planner173

to solve a complex puzzle, i.e., Rubik’s Cube. For realizing174

this, we have created the first PDDL domain for RC. In order175

to make the generated plan understandable by people outside176

the planning community as well, we have integrated the gen-177

erated plan with a visualizer showing step-by-step moves to178

achieve a fully solved RC. In the future, we would like to179

perform a comparative study of the performance of various180

planners and different encodings (PDDL vs. SAS+) to solve181

a given RC configuration. Additionally, an empirical study on182

Heuristic \Problem P1 P2
time (s) cost time (s) cost

LM Cost Partitioning 0.3614 7 1.5284 8
FF 0.0777 7 0.1607 8
Goal count 4.8279 7 75.6992 8
Blind 28.1153 7 274.05 8
Max 0.4576 7 3.9793 8
Causal Graph 498.73 21 52.3757 18
Context-enhanced
additive 741.146 21 526.99 18

Table 1: Comparison of different heuristics on two RC problems.

the performance of abstraction heuristics on the RC modeled 183

in PDDL, which showed some promising results on SAS+ 184

encoding of RC [Büchner et al., 2022], would be interest- 185

ing. Integration of a suitable plan validator would be needed 186

so that human-edited plans can be verified before execution 187

(currently, VAL [Howey et al., 2004] does not handle condi- 188

tional effects). This would help us to assist a learner to solve 189

RC under various constraints such as time or moves. 190

References 191

[Agostinelli et al., 2019] Forest Agostinelli, Stephen 192

McAleer, Alexander Shmakov, and Pierre Baldi. Solving 193

the Rubik’s cube with deep reinforcement learning and 194

search. Nature Mach. Intell., 1(8):356–363, 2019. 195

[Agostinelli et al., 2021] Forest Agostinelli, Mihir 196

Mavalankar, Vedant Khandelwal, Hengtao Tang, Dezhi 197

Wu, Barnett Berry, Biplav Srivastava, Amit Sheth, and 198

Matthew Irvin. Designing children’s new learning partner: 199

Collaborative artificial intelligence for learning to solve 200

the Rubik’s cube. In Interaction Design and Children, 201

pages 610–614, 2021. 202

[Büchner et al., 2022] Clemens Büchner, Patrick Ferber, 203

Jendrik Seipp, and Malte Helmert. A comparison of ab- 204

straction heuristics for rubik’s cube. In ICAPS 2022 Work-205

shop on Heuristics and Search for Domain-independent206

Planning, 2022.207

[Helmert and Geffner, 2008] Malte Helmert and Héctor208

Geffner. Unifying the causal graph and additive heuristics.209

In ICAPS, pages 140–147, 2008.210

[Helmert, 2004] Malte Helmert. A planning heuristic based211

on causal graph analysis. In ICAPS, volume 16, pages212

161–170, 2004.213

[Helmert, 2006] Malte Helmert. The fast downward plan-214

ning system. J. Artif. Int. Res., 26(1):191–246, jul 2006.215

[Hoffmann, 2001] Jörg Hoffmann. Ff: The fast-forward216

planning system. AI magazine, 22(3):57–57, 2001.217

[Howey et al., 2004] Richard Howey, Derek Long, and218

Maria Fox. Val: Automatic plan validation, continuous219

effects and mixed initiative planning using pddl. In 16th220

IEEE International Conference on Tools with Artificial In-221

telligence, pages 294–301. IEEE, 2004.222

[Joyner, 2008] David Joyner. Adventures in group theory:223

Rubik’s Cube, Merlin’s machine, and other mathematical224

toys. JHU Press, 2008.225

[Karpas and Domshlak, 2009] Erez Karpas and Carmel226

Domshlak. Cost-optimal planning with landmarks. In227

IJCAI, pages 1728–1733. Pasadena, CA, 2009.228

[Lakkaraju et al., 2022] Kaushik Lakkaraju, Thahimum229

Hassan, Vedant Khandelwal, Prathamjeet Singh, Cassidy230

Bradley, Ronak Shah, Forest Agostinelli, Biplav Srivas-231

tava, and Dezhi Wu. ALLURE: A multi-modal guided232

environment for helping children learn to solve a Rubik’s233

cube with automatic solving & interactive explanation. In234

AAAI, 2022.235

	Introduction
	Background
	Rubik's Cube (RC)

	System Description
	Heuristic Evaluation
	Conclusion

